論文の概要: Authentication by Location Tracking in Underwater Acoustic Networks
- arxiv url: http://arxiv.org/abs/2410.03511v1
- Date: Fri, 4 Oct 2024 15:26:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 21:50:00.685405
- Title: Authentication by Location Tracking in Underwater Acoustic Networks
- Title(参考訳): 水中音響ネットワークにおける位置追跡による認証
- Authors: Gianmaria Ventura, Francesco Ardizzon, Stefano Tomasin,
- Abstract要約: 本稿では,2段階のコンテキストベース認証機構を提案する。
水中装置の位置を推定し,それに基づいて将来の位置を推定する。
予測位置と推定位置の2乗誤差に対して認証チェックを行う。
- 参考スコア(独自算出の注目度): 6.097864238032973
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physical layer message authentication in underwater acoustic networks (UWANs) leverages the characteristics of the underwater acoustic channel (UWAC) as a fingerprint of the transmitting device. However, as the device moves its UWAC changes, and the authentication mechanism must track such variations. In this paper, we propose a context-based authentication mechanism operating in two steps: first, we estimate the position of the underwater device, then we predict its future position based on the previously estimated ones. To check the authenticity of the transmission, we compare the estimated and the predicted position. The location is estimated using a convolutional neural network taking as input the sample covariance matrix of the estimated UWACs. The prediction uses either a Kalman filter or a recurrent neural network (RNN). The authentication check is performed on the squared error between the predicted and estimated positions. The solution based on the Kalman filter outperforms that built on the RNN when the device moves according to a correlated Gauss-Markov mobility model, which reproduces a typical underwater motion.
- Abstract(参考訳): 水中音響ネットワーク(UWAN)における物理層メッセージ認証は,送信装置の指紋として水中音響チャネル(UWAC)の特性を利用する。
しかし、デバイスがUWACを変更すると、認証機構はそのようなバリエーションを追跡する必要がある。
本稿では,まず,水中デバイスの位置を推定し,それに基づいて将来の位置を推定する,という2つのステップで動作するコンテキストベース認証機構を提案する。
送信の真正性を確認するため,推定位置と予測位置を比較した。
推定されたUWACのサンプル共分散行列を入力として、畳み込みニューラルネットワークを用いて位置を推定する。
この予測は、カルマンフィルタまたはリカレントニューラルネットワーク(RNN)を使用する。
予測位置と推定位置の2乗誤差に対して認証チェックを行う。
カルマンフィルタに基づく解は、典型的な水中動作を再現する相関したガウス-マルコフ運動モデルに従って、RNN上に構築された解よりも優れる。
関連論文リスト
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - Detecting 5G Narrowband Jammers with CNN, k-nearest Neighbors, and Support Vector Machines [4.678637187649889]
5Gセルネットワークは、無線信号の特定の制御サブチャネルを標的とする狭帯域ジャマに対して脆弱である。
1つの緩和アプローチは、機械学習に基づいて、オンライン観察システムでこのような妨害攻撃を検出することである。
本稿では,二項分類を行う機械学習モデルを用いて,物理層におけるジャミングを検出することを提案する。
論文 参考訳(メタデータ) (2024-05-07T13:54:12Z) - Spoofing Attack Detection in the Physical Layer with Robustness to User
Movement [20.705184880085557]
スプーフィング攻撃では、攻撃者は正当なユーザに対して、後者に属するデータにアクセスまたは変更するよう命令する。
本稿では,深層ニューラルネットワークに基づく位置変化検出器の決定を組み合わせ,スプーリングと動きを区別する手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T07:18:03Z) - Hybrid PLS-ML Authentication Scheme for V2I Communication Networks [0.0]
本稿では,送信機の位置をデバイス指紋として利用して,PLS(Hybrid physical Layer Security)-machine Learning (ML)認証手法を提案する。
我々は、ToAを道路側ユニット(RSU)で推定し、基地局(BS)で送信機の座標を抽出する、ToA(Time-of-arrival)ベースのローカライゼーション機構を用いる。
移動車両の移動性を追跡するため,複数のシステムパラメータに基づいて学習したMLモデルを用いて,提案した位置ベース機構が検出に失敗した場合のベースラインスキームを著しく上回っていることを観察した。
論文 参考訳(メタデータ) (2023-08-28T16:34:50Z) - An Explainable Model-Agnostic Algorithm for CNN-based Biometrics
Verification [55.28171619580959]
本稿では,生体認証環境下でのLIME(Local Interpretable Model-Agnostic Explanations)AI手法の適用について述べる。
論文 参考訳(メタデータ) (2023-07-25T11:51:14Z) - Reversible Quantization Index Modulation for Static Deep Neural Network
Watermarking [57.96787187733302]
可逆的データ隠蔽法(RDH)は潜在的な解決策を提供するが、既存のアプローチはユーザビリティ、キャパシティ、忠実性の面で弱点に悩まされている。
量子化指数変調(QIM)を用いたRDHに基づく静的DNN透かし手法を提案する。
提案手法は,透かし埋め込みのための1次元量化器に基づく新しい手法を取り入れたものである。
論文 参考訳(メタデータ) (2023-05-29T04:39:17Z) - GaitSADA: Self-Aligned Domain Adaptation for mmWave Gait Recognition [14.750765172614836]
mmWaveレーダを用いた歩行認識は,mmWaveレーダの帰還信号から人間の歩行バイオメトリックスを捕捉する新しいユーザ識別法である。
この問題を軽減するために、GaitSADAと呼ばれる新しい自己整合ドメイン適応法を提案する。
実験により、GaitSADAは、低データ状態における平均精度で15.41%から26.32%の改善により、代表的ドメイン適応法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-01-31T03:21:08Z) - Verifying Low-dimensional Input Neural Networks via Input Quantization [12.42030531015912]
本稿では,ACAS Xu ネットワーク検証の当初の問題を再考する。
本稿では,入力量子化層をネットワークにプリペイドすることを提案する。
本手法は,浮動小数点誤差に耐性のない正確な検証結果を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:42:05Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
我々は、自動話者検証(ASV)のための敵対サンプルを見つけるために、ニューラルボコーダを採用する。
元の音声と再合成音声のASVスコアの違いは、真正と逆正のサンプルの識別に良い指標であることがわかった。
私たちのコードは、将来的な比較作業のためにオープンソースにされます。
論文 参考訳(メタデータ) (2021-07-01T08:58:16Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
機械学習アルゴリズムは、トレーニング(ソース)とテスト(ターゲット)データの分散のミスマッチの影響を受けやすい。
本研究では,ターゲット領域音響シーンの各周波数帯域の1次及び2次サンプル統計値と,ソース領域学習データセットの1次と2次サンプル統計値との整合性を有する教師なし領域適応手法を提案する。
提案手法は,文献にみられる最先端の教師なし手法よりも,ソース・ドメインの分類精度とターゲット・ドメインの分類精度の両面で優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:56:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。