LCMDC: Large-scale Chinese Medical Dialogue Corpora for Automatic Triage and Medical Consultation
- URL: http://arxiv.org/abs/2410.03521v1
- Date: Fri, 27 Sep 2024 00:01:32 GMT
- Title: LCMDC: Large-scale Chinese Medical Dialogue Corpora for Automatic Triage and Medical Consultation
- Authors: Xinyuan Wang, Haozhou Li, Dingfang Zheng, Qinke Peng,
- Abstract summary: The COVID-19 pandemic underscored major deficiencies in traditional healthcare systems.
Existing studies face two main challenges.
First, the scarcity of large-scale, publicly available, domain-specific medical datasets due to privacy concerns.
Second, existing methods lack medical knowledge and struggle to accurately understand professional terms and expressions in patient-doctor consultations.
- Score: 2.04367431902848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The global COVID-19 pandemic underscored major deficiencies in traditional healthcare systems, hastening the advancement of online medical services, especially in medical triage and consultation. However, existing studies face two main challenges. First, the scarcity of large-scale, publicly available, domain-specific medical datasets due to privacy concerns, with current datasets being small and limited to a few diseases, limiting the effectiveness of triage methods based on Pre-trained Language Models (PLMs). Second, existing methods lack medical knowledge and struggle to accurately understand professional terms and expressions in patient-doctor consultations. To overcome these obstacles, we construct the Large-scale Chinese Medical Dialogue Corpora (LCMDC), comprising a Coarse-grained Triage dataset with 439,630 samples, a Fine-grained Diagnosis dataset with 199,600 samples, and a Medical Consultation dataset with 472,418 items, thereby addressing the data shortage in this field. Moreover, we further propose a novel triage system that combines BERT-based supervised learning with prompt learning, as well as a GPT-based medical consultation model using reinforcement learning. To enhance domain knowledge acquisition, we pre-trained PLMs using our self-constructed background corpus. Experimental results on the LCMDC demonstrate the efficacy of our proposed systems.
Related papers
- BianCang: A Traditional Chinese Medicine Large Language Model [22.582027277167047]
BianCang is a TCM-specific large language model (LLMs) that first injects domain-specific knowledge and then aligns it through targeted stimulation.
We constructed pre-training corpora, instruction-aligned datasets based on real hospital records, and the ChP-TCM dataset derived from the Pharmacopoeia of the People's Republic of China.
We compiled extensive TCM and medical corpora for continuous pre-training and supervised fine-tuning, building a comprehensive dataset to refine the model's understanding of TCM.
arXiv Detail & Related papers (2024-11-17T10:17:01Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
We introduce the Medical dialogue with Knowledge enhancement and clinical Pathway encoding framework.
The framework integrates an external knowledge enhancement module through a medical knowledge graph and an internal clinical pathway encoding via medical entities and physician actions.
arXiv Detail & Related papers (2024-03-11T10:57:45Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
We propose NECHO, a novel medical code-centric multimodal contrastive EHR learning framework with hierarchical regularisation.
First, we integrate multifaceted information encompassing medical codes, demographics, and clinical notes using a tailored network design.
We also regularise modality-specific encoders using a parental level information in medical ontology to learn hierarchical structure of EHR data.
arXiv Detail & Related papers (2024-01-22T01:58:32Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
We propose ChiMed-GPT, a benchmark LLM designed explicitly for Chinese medical domain.
ChiMed-GPT undergoes a comprehensive training regime with pre-training, SFT, and RLHF.
We analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients.
arXiv Detail & Related papers (2023-11-10T12:25:32Z) - Leveraging A Medical Knowledge Graph into Large Language Models for
Diagnosis Prediction [7.5569033426158585]
We propose an innovative approach for augmenting the proficiency of Large Language Models (LLMs) in automated diagnosis generation.
We derive the KG from the National Library of Medicine's Unified Medical Language System (UMLS), a robust repository of biomedical knowledge.
Our approach offers an explainable diagnostic pathway, edging us closer to the realization of AI-augmented diagnostic decision support systems.
arXiv Detail & Related papers (2023-08-28T06:05:18Z) - ClinicalGPT: Large Language Models Finetuned with Diverse Medical Data
and Comprehensive Evaluation [5.690250818139763]
Large language models have exhibited exceptional performance on various Natural Language Processing (NLP) tasks.
Despite these advances, their effectiveness in medical applications is limited, due to challenges such as factual inaccuracies, reasoning abilities, and lack grounding in real-world experience.
We present ClinicalGPT, a language model explicitly designed and optimized for clinical scenarios.
arXiv Detail & Related papers (2023-06-16T16:56:32Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding.
LLMs struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge.
We describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA.
arXiv Detail & Related papers (2023-04-27T18:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.