Building a Chinese Medical Dialogue System: Integrating Large-scale Corpora and Novel Models
- URL: http://arxiv.org/abs/2410.03521v2
- Date: Tue, 25 Feb 2025 02:17:05 GMT
- Title: Building a Chinese Medical Dialogue System: Integrating Large-scale Corpora and Novel Models
- Authors: Xinyuan Wang, Haozhou Li, Dingfang Zheng, Qinke Peng,
- Abstract summary: The COVID-19 pandemic underscored major deficiencies in traditional healthcare systems, hastening the advancement of online medical services.<n>Existing studies face two main challenges.<n>First, the scarcity of large-scale, publicly available, domain-specific medical datasets due to privacy concerns.<n>Second, existing methods lack medical knowledge and struggle to accurately understand professional terms and expressions in patient-doctor consultations.
- Score: 2.04367431902848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The global COVID-19 pandemic underscored major deficiencies in traditional healthcare systems, hastening the advancement of online medical services, especially in medical triage and consultation. However, existing studies face two main challenges. First, the scarcity of large-scale, publicly available, domain-specific medical datasets due to privacy concerns, with current datasets being small and limited to a few diseases, limiting the effectiveness of triage methods based on Pre-trained Language Models (PLMs). Second, existing methods lack medical knowledge and struggle to accurately understand professional terms and expressions in patient-doctor consultations. To overcome these obstacles, we construct the Large-scale Chinese Medical Dialogue Corpora (LCMDC), thereby addressing the data shortage in this field. Moreover, we further propose a novel triage system that combines BERT-based supervised learning with prompt learning, as well as a GPT-based medical consultation model. To enhance domain knowledge acquisition, we pre-trained PLMs using our self-constructed background corpus. Experimental results on the LCMDC demonstrate the efficacy of our proposed systems.
Related papers
- IIMedGPT: Promoting Large Language Model Capabilities of Medical Tasks by Efficient Human Preference Alignment [6.022433954095106]
We introduce a medical instruction dataset, CMedINS, containing six medical instructions derived from actual medical tasks.
We then launch our medical model, IIMedGPT, employing an efficient preference alignment method.
The results show that our final model outperforms existing medical models in medical dialogue.
arXiv Detail & Related papers (2025-01-06T09:22:36Z) - BianCang: A Traditional Chinese Medicine Large Language Model [22.582027277167047]
BianCang is a TCM-specific large language model (LLMs) that first injects domain-specific knowledge and then aligns it through targeted stimulation.
We constructed pre-training corpora, instruction-aligned datasets based on real hospital records, and the ChP-TCM dataset derived from the Pharmacopoeia of the People's Republic of China.
We compiled extensive TCM and medical corpora for continuous pre-training and supervised fine-tuning, building a comprehensive dataset to refine the model's understanding of TCM.
arXiv Detail & Related papers (2024-11-17T10:17:01Z) - Intelligent Understanding of Large Language Models in Traditional Chinese Medicine Based on Prompt Engineering Framework [3.990633038739491]
We propose TCM-Prompt, a framework that integrates various pre-trained language models (PLMs), templates, tokenization, and verbalization methods.
We conducted experiments on disease classification, syndrome identification, herbal medicine recommendation, and general NLP tasks.
arXiv Detail & Related papers (2024-10-25T10:24:30Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - PediatricsGPT: Large Language Models as Chinese Medical Assistants for Pediatric Applications [22.175201525690493]
This paper builds PedCorpus, a high-quality dataset of over 300,000 multi-task instructions from pediatric textbooks, guidelines, and knowledge graph resources to fulfil diverse diagnostic demands.
Upon well-designed PedCorpus, we propose PediatricsGPT, the first Chinese pediatric LLM assistant built on a systematic and robust training pipeline.
arXiv Detail & Related papers (2024-05-29T16:59:38Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
We introduce the Medical dialogue with Knowledge enhancement and clinical Pathway encoding framework.
The framework integrates an external knowledge enhancement module through a medical knowledge graph and an internal clinical pathway encoding via medical entities and physician actions.
arXiv Detail & Related papers (2024-03-11T10:57:45Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
We propose NECHO, a novel medical code-centric multimodal contrastive EHR learning framework with hierarchical regularisation.
First, we integrate multifaceted information encompassing medical codes, demographics, and clinical notes using a tailored network design.
We also regularise modality-specific encoders using a parental level information in medical ontology to learn hierarchical structure of EHR data.
arXiv Detail & Related papers (2024-01-22T01:58:32Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
We propose ChiMed-GPT, a benchmark LLM designed explicitly for Chinese medical domain.
ChiMed-GPT undergoes a comprehensive training regime with pre-training, SFT, and RLHF.
We analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients.
arXiv Detail & Related papers (2023-11-10T12:25:32Z) - Leveraging A Medical Knowledge Graph into Large Language Models for
Diagnosis Prediction [7.5569033426158585]
We propose an innovative approach for augmenting the proficiency of Large Language Models (LLMs) in automated diagnosis generation.
We derive the KG from the National Library of Medicine's Unified Medical Language System (UMLS), a robust repository of biomedical knowledge.
Our approach offers an explainable diagnostic pathway, edging us closer to the realization of AI-augmented diagnostic decision support systems.
arXiv Detail & Related papers (2023-08-28T06:05:18Z) - ClinicalGPT: Large Language Models Finetuned with Diverse Medical Data
and Comprehensive Evaluation [5.690250818139763]
Large language models have exhibited exceptional performance on various Natural Language Processing (NLP) tasks.
Despite these advances, their effectiveness in medical applications is limited, due to challenges such as factual inaccuracies, reasoning abilities, and lack grounding in real-world experience.
We present ClinicalGPT, a language model explicitly designed and optimized for clinical scenarios.
arXiv Detail & Related papers (2023-06-16T16:56:32Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding.
LLMs struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge.
We describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA.
arXiv Detail & Related papers (2023-04-27T18:29:05Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - Self-Supervised Knowledge Assimilation for Expert-Layman Text Style
Transfer [63.72621204057025]
Expert-layman text style transfer technologies have the potential to improve communication between scientific communities and the general public.
High-quality information produced by experts is often filled with difficult jargon laypeople struggle to understand.
This is a particularly notable issue in the medical domain, where layman are often confused by medical text online.
arXiv Detail & Related papers (2021-10-06T17:57:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.