Ward: Provable RAG Dataset Inference via LLM Watermarks
- URL: http://arxiv.org/abs/2410.03537v1
- Date: Fri, 4 Oct 2024 15:54:49 GMT
- Title: Ward: Provable RAG Dataset Inference via LLM Watermarks
- Authors: Nikola Jovanović, Robin Staab, Maximilian Baader, Martin Vechev,
- Abstract summary: Retrieval-Augmented Generation (RAG) improves LLMs by enabling them to incorporate external data during generation.
This raises concerns for data owners regarding unauthorized use of their content in RAG systems.
We introduce Ward, a RAG-DI method based on LLM watermarks that enables data owners to obtain rigorous statistical guarantees regarding the usage of their dataset in a RAG system.
- Score: 6.112273651406279
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) improves LLMs by enabling them to incorporate external data during generation. This raises concerns for data owners regarding unauthorized use of their content in RAG systems. Despite its importance, the challenge of detecting such unauthorized usage remains underexplored, with existing datasets and methodologies from adjacent fields being ill-suited for its study. In this work, we take several steps to bridge this gap. First, we formalize this problem as (black-box) RAG Dataset Inference (RAG-DI). To facilitate research on this challenge, we further introduce a novel dataset specifically designed for benchmarking RAG-DI methods under realistic conditions, and propose a set of baseline approaches. Building on this foundation, we introduce Ward, a RAG-DI method based on LLM watermarks that enables data owners to obtain rigorous statistical guarantees regarding the usage of their dataset in a RAG system. In our experimental evaluation, we show that Ward consistently outperforms all baselines across many challenging settings, achieving higher accuracy, superior query efficiency and robustness. Our work provides a foundation for future studies of RAG-DI and highlights LLM watermarks as a promising approach to this problem.
Related papers
- Dataset Protection via Watermarked Canaries in Retrieval-Augmented LLMs [67.0310240737424]
We introduce a novel approach to safeguard the ownership of text datasets and effectively detect unauthorized use by the RA-LLMs.
Our approach preserves the original data completely unchanged while protecting it by inserting specifically designed canary documents into the IP dataset.
During the detection process, unauthorized usage is identified by querying the canary documents and analyzing the responses of RA-LLMs.
arXiv Detail & Related papers (2025-02-15T04:56:45Z) - LaRA: Benchmarking Retrieval-Augmented Generation and Long-Context LLMs -- No Silver Bullet for LC or RAG Routing [70.35888047551643]
We present LaRA, a novel benchmark specifically designed to rigorously compare RAG and LC LLMs.
LaRA encompasses 2326 test cases across four practical QA task categories and three types of naturally occurring long texts.
We find that the optimal choice between RAG and LC depends on a complex interplay of factors, including the model's parameter size, long-text capabilities, context length, task type, and the characteristics of the retrieved chunks.
arXiv Detail & Related papers (2025-02-14T08:04:22Z) - MARAGE: Transferable Multi-Model Adversarial Attack for Retrieval-Augmented Generation Data Extraction [6.917134562107388]
Retrieval-Augmented Generation (RAG) offers a solution to hallucinations in Large Language Models (LLMs) by grounding their outputs to knowledge retrieved from external sources.
Existing RAG extraction attacks often rely on manually crafted prompts, which limit their effectiveness.
We introduce a framework called MARAGE for optimizing an adversarial string that, when appended to user queries submitted to a target RAG system, causes outputs containing the retrieved RAG data.
arXiv Detail & Related papers (2025-02-05T00:17:01Z) - Clear Minds Think Alike: What Makes LLM Fine-tuning Robust? A Study of Token Perplexity [61.48338027901318]
We show that fine-tuning with LLM-generated data improves target task performance and reduces out-of-domain degradation.
This is the first mechanistic explanation for the superior OOD robustness conferred by LLM-generated training data.
arXiv Detail & Related papers (2025-01-24T08:18:56Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - SimRAG: Self-Improving Retrieval-Augmented Generation for Adapting Large Language Models to Specialized Domains [45.349645606978434]
Retrieval-augmented generation (RAG) enhances the question-answering abilities of large language models (LLMs)
However, adapting general-purpose RAG systems to specialized fields such as science and medicine poses unique challenges due to distribution shifts and limited access to domain-specific data.
We propose SimRAG, a self-training approach that equips the LLM with joint capabilities of question answering and question generation for domain adaptation.
arXiv Detail & Related papers (2024-10-23T15:24:16Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [56.24431208419858]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Adversarial Databases Improve Success in Retrieval-based Large Language Models [0.3045901500495719]
Retrieval-Augmented Generation (RAG) is a technique for improving the performance of LLMs on tasks that the models weren't explicitly trained on.
We set up several open-source LLMs, including Llama 3, Phi-3, Mixtral 8x7b, Zephyr$beta$, and Gemma 7B Instruct, in a zero-shot RAG pipeline.
As adversarial sources of information, text from the Bible and a Random Words generated database were used for comparison.
arXiv Detail & Related papers (2024-07-19T18:08:39Z) - BERGEN: A Benchmarking Library for Retrieval-Augmented Generation [26.158785168036662]
Retrieval-Augmented Generation allows to enhance Large Language Models with external knowledge.
Inconsistent benchmarking poses a major challenge in comparing approaches and understanding the impact of each component in the pipeline.
In this work, we study best practices that lay the groundwork for a systematic evaluation of RAG and present BERGEN, an end-to-end library for reproducible research standardizing RAG experiments.
arXiv Detail & Related papers (2024-07-01T09:09:27Z) - Understand What LLM Needs: Dual Preference Alignment for Retrieval-Augmented Generation [64.7982176398485]
Retrieval-augmented generation (RAG) has demonstrated effectiveness in mitigating the hallucination problem of large language models (LLMs)
We propose DPA-RAG, a universal framework designed to align diverse knowledge preferences within RAG systems.
arXiv Detail & Related papers (2024-06-26T18:26:53Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - DCA-Bench: A Benchmark for Dataset Curation Agents [9.60250892491588]
We propose a dataset curation agent benchmark, DCA-Bench, to measure large language models' capability of detecting hidden dataset quality issues.
Specifically, we collect diverse real-world dataset quality issues from eight open dataset platforms as a testbed.
The proposed benchmark can also serve as a testbed for measuring the capability of LLMs in problem discovery rather than just problem-solving.
arXiv Detail & Related papers (2024-06-11T14:02:23Z) - Get my drift? Catching LLM Task Drift with Activation Deltas [55.75645403965326]
Task drift allows attackers to exfiltrate data or influence the LLM's output for other users.
We show that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set.
We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions.
arXiv Detail & Related papers (2024-06-02T16:53:21Z) - ERATTA: Extreme RAG for Table To Answers with Large Language Models [1.3318204310917532]
Large language models (LLMs) with retrieval augmented-generation (RAG) have been the optimal choice for scalable generative AI solutions.
We propose a unique LLM-based system where multiple LLMs can be invoked to enable data authentication, user-query routing, data-retrieval and custom prompting for question-answering capabilities from Enterprise-data tables.
Our proposed system and scoring metrics achieve >90% confidence scores across hundreds of user queries in the sustainability, financial health and social media domains.
arXiv Detail & Related papers (2024-05-07T02:49:59Z) - Enhancing LLM Factual Accuracy with RAG to Counter Hallucinations: A Case Study on Domain-Specific Queries in Private Knowledge-Bases [9.478012553728538]
We propose an end-to-end system design towards utilizing Retrieval Augmented Generation (RAG) to improve the factual accuracy of Large Language Models (LLMs)
Our system integrates RAG pipeline with upstream datasets processing and downstream performance evaluation.
Our experiments demonstrate the system's effectiveness in generating more accurate answers to domain-specific and time-sensitive inquiries.
arXiv Detail & Related papers (2024-03-15T16:30:14Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented generation (RAG) is a powerful technique to facilitate language model with proprietary and private data.
In this work, we conduct empirical studies with novel attack methods, which demonstrate the vulnerability of RAG systems on leaking the private retrieval database.
arXiv Detail & Related papers (2024-02-23T18:35:15Z) - Contrastive Multiple Instance Learning for Weakly Supervised Person ReID [50.04900262181093]
We introduce Contrastive Multiple Instance Learning (CMIL), a novel framework tailored for more effective weakly supervised ReID.
CMIL distinguishes itself by requiring only a single model and no pseudo labels while leveraging contrastive losses.
We release the WL-MUDD dataset, an extension of the MUDD dataset featuring naturally occurring weak labels from the real-world application at PerformancePhoto.co.
arXiv Detail & Related papers (2024-02-12T14:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.