論文の概要: Evaluating Investment Risks in LATAM AI Startups: Ranking of Investment Potential and Framework for Valuation
- arxiv url: http://arxiv.org/abs/2410.03552v1
- Date: Tue, 17 Sep 2024 22:31:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 21:29:56.826900
- Title: Evaluating Investment Risks in LATAM AI Startups: Ranking of Investment Potential and Framework for Valuation
- Title(参考訳): LATAM AIスタートアップにおける投資リスクの評価:投資可能性のランキングと評価フレームワーク
- Authors: Abraham Ramos-Torres, Laura N. Montoya,
- Abstract要約: この研究は、テクノロジースタートアップ投資の新興勢力のランキングの開発を通じて、この地域におけるAI主導のスタートアップの可能性と収益性を強調している。
本稿は、スタートアップが直面する政治的、経済的、競争的なリスクについても検討し、投資リターンを最大化するためにこれらのリスクを軽減するための戦略的洞察を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The growth of the tech startup ecosystem in Latin America (LATAM) is driven by innovative entrepreneurs addressing market needs across various sectors. However, these startups encounter unique challenges and risks that require specific management approaches. This paper explores a case study with the Total Addressable Market (TAM), Serviceable Available Market (SAM), and Serviceable Obtainable Market (SOM) metrics within the context of the online food delivery industry in LATAM, serving as a model for valuing startups using the Discounted Cash Flow (DCF) method. By analyzing key emerging powers such as Argentina, Colombia, Uruguay, Costa Rica, Panama, and Ecuador, the study highlights the potential and profitability of AI-driven startups in the region through the development of a ranking of emerging powers in Latin America for tech startup investment. The paper also examines the political, economic, and competitive risks faced by startups and offers strategic insights on mitigating these risks to maximize investment returns. Furthermore, the research underscores the value of diversifying investment portfolios with startups in emerging markets, emphasizing the opportunities for substantial growth and returns despite inherent risks.
- Abstract(参考訳): ラテンアメリカのテックスタートアップエコシステム(LATAM)の成長は、さまざまな分野の市場ニーズに対処する革新的な起業家たちによって支えられている。
しかし、これらのスタートアップは、特定の管理アプローチを必要とするユニークな課題とリスクに直面している。
本稿では,LATAMのオンラインフードデリバリー産業の文脈において,TAM,SAM,SOMの指標を用いて事例スタディを行い,DCF(Discounted Cash Flow)手法を用いてスタートアップを評価するモデルとして機能する。
この研究は、アルゼンチン、コロンビア、ウルグアイ、コスタリカ、パナマ、エクアドルといった主要新興国を分析し、ラテンアメリカにおけるテックスタートアップ投資の新興国ランキングの開発を通じて、この地域におけるAI駆動スタートアップの可能性と利益性を強調している。
本稿は、スタートアップが直面する政治的、経済的、競争的なリスクについても検討し、投資リターンを最大化するためにこれらのリスクを軽減するための戦略的洞察を提供する。
さらにこの研究は、新興市場のスタートアップと投資ポートフォリオの多様化の価値を強調し、固有のリスクにもかかわらず、実質的な成長とリターンの機会を強調している。
関連論文リスト
- When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - Automating Venture Capital: Founder assessment using LLM-powered segmentation, feature engineering and automated labeling techniques [0.0]
本研究では、ベンチャーキャピタル(VC)意思決定における大規模言語モデル(LLM)の適用について検討する。
我々はLLMプロンプト技術を利用して、限られたデータから特徴を生成し、統計と機械学習を通して洞察を抽出する。
この結果から,特定の創始者特性と成功との関係が明らかとなり,予測におけるこれらの特性の有効性が示された。
論文 参考訳(メタデータ) (2024-07-05T22:54:13Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
本稿では,オープンワールド対話型タスクの解法において,LLMエージェントの強化を目的としたWeak Exploration to Strong Exploitation (WESE)を提案する。
WESEは、探究と搾取のプロセスを分離し、費用対効果の弱いエージェントを用いて世界的知識の探索を行う。
次に、獲得した知識を格納し、タスク関連知識を抽出する知識グラフベースの戦略を導入する。
論文 参考訳(メタデータ) (2024-04-11T03:31:54Z) - From Transcripts to Insights: Uncovering Corporate Risks Using
Generative AI [0.0]
我々は、政治的、気候的、AI関連のリスクに曝露する、しっかりとしたレベルのリスク対策を開発し、検証する。
GPT 3.5 モデルを用いてリスクサマリーとアセスメントを生成することにより,GPT ベースの尺度が重要な情報内容を有することを示す。
また、生成的AIは、近年の四半期で急増しているAIリスクのような、新たなリスクを検出するのに効果的であることもわかっています。
論文 参考訳(メタデータ) (2023-10-26T18:30:37Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - E2EAI: End-to-End Deep Learning Framework for Active Investing [123.52358449455231]
本稿では, ファクタ選択, ファクタ組み合わせ, 株式選択, ポートフォリオ構築を通じて, ファクター投資のほぼ全過程をカバーするE2Eを提案する。
実際の株式市場データの実験は、アクティブ投資におけるエンドツーエンドのディープ・リーン・フレームワークの有効性を示している。
論文 参考訳(メタデータ) (2023-05-25T10:27:07Z) - A Data-Driven Framework for Identifying Investment Opportunities in
Private Equity [0.0]
本稿では、投資機会の自動スクリーニングのためのフレームワークを提案する。
このフレームワークは、企業の財務的および管理的立場を評価するために、複数のソースからデータを引き出す。
次に、説明可能な人工知能(XAI)エンジンを使用して投資勧告を提案する。
論文 参考訳(メタデータ) (2022-04-04T21:28:34Z) - Graph Neural Network Based VC Investment Success Prediction [11.527912247719915]
我々は,ノードの豊富な属性とともにネットワーク構造を利用して,漸進的な表現学習機構と逐次学習モデルを設計する。
本手法は,グローバルベンチャーキャピタル投資の包括的データセットを用いて,最先端の予測性能を実現する。
医療やITといった業界のスタートアップの成果を予測するのに長けている。
論文 参考訳(メタデータ) (2021-05-25T14:29:45Z) - Learning Risk Preferences from Investment Portfolios Using Inverse
Optimization [25.19470942583387]
本稿では,既存ポートフォリオからのリスク嗜好を逆最適化を用いて測定する手法を提案する。
我々は、20年間の資産価格と10年間の相互ファンドポートフォリオ保有からなる実市場データについて、本手法を実証する。
論文 参考訳(メタデータ) (2020-10-04T21:29:29Z) - Qlib: An AI-oriented Quantitative Investment Platform [86.8580406876954]
AI技術は、量的投資システムに新たな課題を提起した。
Qlibは、その可能性の実現、研究の強化、定量的投資におけるAIテクノロジの価値の創造を目的とする。
論文 参考訳(メタデータ) (2020-09-22T12:57:10Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。