論文の概要: Discovering Biases in Information Retrieval Models Using Relevance Thesaurus as Global Explanation
- arxiv url: http://arxiv.org/abs/2410.03584v1
- Date: Fri, 04 Oct 2024 16:42:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 14:01:53.830636
- Title: Discovering Biases in Information Retrieval Models Using Relevance Thesaurus as Global Explanation
- Title(参考訳): 関連シソーラスをグローバルな説明として用いた情報検索モデルにおけるバイアスの発見
- Authors: Youngwoo Kim, Razieh Rahimi, James Allan,
- Abstract要約: 我々は「関連シソーラス」を構築することにより、世界規模で神経関連モデルを説明する新しい手法を提案する。
このシソーラスは、BM25のような語彙マッチングモデルを拡張して、ニューラルネットワークの予測を近似するために用いられる。
- 参考スコア(独自算出の注目度): 23.50629779375759
- License:
- Abstract: Most efforts in interpreting neural relevance models have focused on local explanations, which explain the relevance of a document to a query but are not useful in predicting the model's behavior on unseen query-document pairs. We propose a novel method to globally explain neural relevance models by constructing a "relevance thesaurus" containing semantically relevant query and document term pairs. This thesaurus is used to augment lexical matching models such as BM25 to approximate the neural model's predictions. Our method involves training a neural relevance model to score the relevance of partial query and document segments, which is then used to identify relevant terms across the vocabulary space. We evaluate the obtained thesaurus explanation based on ranking effectiveness and fidelity to the target neural ranking model. Notably, our thesaurus reveals the existence of brand name bias in ranking models, demonstrating one advantage of our explanation method.
- Abstract(参考訳): ニューラル関連モデルの解釈におけるほとんどの取り組みは、クエリに対するドキュメントの関連性を説明する局所的な説明に重点を置いているが、目に見えないクエリとドキュメントのペアに対するモデルの振る舞いを予測するのには役に立たない。
本稿では,意味論的に関連する問合せと文書用語のペアを含む「関連シソーラス」を構築することにより,グローバルに神経関連モデルを説明する手法を提案する。
このシソーラスは、BM25のような語彙マッチングモデルを拡張して、ニューラルネットワークの予測を近似するために用いられる。
本手法では,部分的クエリと文書セグメントの関連性を評価するために,ニューラルネットワークの関連性モデルをトレーニングし,語彙空間全体にわたって関連する用語を識別する。
対象のニューラルランキングモデルに対するランキングの有効性と忠実度に基づいて,得られたシソーラス説明を評価した。
特に,本論文では,ランキングモデルにブランド名バイアスが存在することを明らかにし,説明手法の利点の1つを示した。
関連論文リスト
- Topics in the Haystack: Extracting and Evaluating Topics beyond
Coherence [0.0]
本稿では,文と文書のテーマを深く理解する手法を提案する。
これにより、一般的な単語やネオロジズムを含む潜在トピックを検出することができる。
本稿では, 侵入者の単語の人間識別と相関係数を示し, 単語侵入作業において, ほぼ人間レベルの結果を得る。
論文 参考訳(メタデータ) (2023-03-30T12:24:25Z) - Reconciliation of Pre-trained Models and Prototypical Neural Networks in
Few-shot Named Entity Recognition [35.34238362639678]
本研究では,このようなミスマッチを経験的・理論的根拠と整合させる一線符号正規化法を提案する。
我々の研究は、数発のエンティティ認識における一般的な問題に対処するための分析的な視点も提供します。
論文 参考訳(メタデータ) (2022-11-07T02:33:45Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
我々は,クエリとユーザが関連すると考えるドキュメントとの類似性に基づいて,文書を再参照するkNNアプローチを提案する。
異なる統合戦略を評価するため、既存の4つの情報検索データセットを関連フィードバックシナリオに変換する。
論文 参考訳(メタデータ) (2022-10-19T16:19:37Z) - Better Language Model with Hypernym Class Prediction [101.8517004687825]
クラスベース言語モデル (LM) は、コンテキストの疎結合に$n$-gramのLMで対処するために長年開発されてきた。
本研究では,このアプローチをニューラルLMの文脈で再考する。
論文 参考訳(メタデータ) (2022-03-21T01:16:44Z) - Hierarchical Interpretation of Neural Text Classification [31.95426448656938]
本稿では,Hintと呼ばれる階層型インタプリタ型ニューラルテキスト分類器を提案する。
レビューデータセットとニュースデータセットの両方の実験結果から,提案手法は既存の最先端テキスト分類器と同等のテキスト分類結果が得られることが示された。
論文 参考訳(メタデータ) (2022-02-20T11:15:03Z) - Tracing Origins: Coref-aware Machine Reading Comprehension [43.352833140317486]
そこで,本研究では,アナフォリック表現を接続する際の人間の読影過程を模倣し,コア参照情報を活用し,事前学習モデルから単語の埋め込みを強化する。
学習段階におけるコア参照情報の明示的な組み込みは,事前学習言語モデルの訓練において,コア参照情報の組み込みよりも優れていたことを実証した。
論文 参考訳(メタデータ) (2021-10-15T09:28:35Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
本論文では, 遠隔ラベルデータから予測可能, 解釈可能, 堅牢な関係表現を学習することを目的とする。
文脈情報から各関係のプロトタイプを学習し,関係の本質的意味を最善に探求する。
いくつかの関係学習タスクの結果,本モデルが従来の関係モデルを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-03-22T08:11:43Z) - Introducing Syntactic Structures into Target Opinion Word Extraction
with Deep Learning [89.64620296557177]
目的語抽出のためのディープラーニングモデルに文の構文構造を組み込むことを提案する。
また,ディープラーニングモデルの性能向上のために,新たな正規化手法を導入する。
提案モデルは,4つのベンチマークデータセット上での最先端性能を広範囲に解析し,達成する。
論文 参考訳(メタデータ) (2020-10-26T07:13:17Z) - High-order Semantic Role Labeling [86.29371274587146]
本稿では,ニューラルセマンティックロールラベリングモデルのための高階グラフ構造を提案する。
これにより、モデルは孤立述語-引数対だけでなく、述語-引数対間の相互作用も明示的に考慮することができる。
CoNLL-2009ベンチマークの7つの言語に対する実験結果から、高次構造学習技術は強力なSRLモデルに有益であることが示された。
論文 参考訳(メタデータ) (2020-10-09T15:33:54Z) - Learning from Context or Names? An Empirical Study on Neural Relation
Extraction [112.06614505580501]
テキストにおける2つの主要な情報ソースの効果について検討する:テキストコンテキストとエンティティ参照(名前)
本稿では,関係抽出のための実体型コントラスト事前学習フレームワーク(RE)を提案する。
我々のフレームワークは、異なるREシナリオにおけるニューラルモデルの有効性と堅牢性を改善することができる。
論文 参考訳(メタデータ) (2020-10-05T11:21:59Z) - Leveraging Cognitive Search Patterns to Enhance Automated Natural
Language Retrieval Performance [0.0]
ユーザの検索行動を模倣する認知的再構成パターンが強調されている。
問合せの概念表現を考慮し,これらのパターンの適用を形式化する。
遺伝的アルゴリズムに基づく重み付けプロセスでは、概念的役割タイプに応じて用語に重点を置くことができる。
論文 参考訳(メタデータ) (2020-04-21T14:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。