論文の概要: Explainable Moral Values: a neuro-symbolic approach to value classification
- arxiv url: http://arxiv.org/abs/2410.12631v1
- Date: Wed, 16 Oct 2024 14:53:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:39.073766
- Title: Explainable Moral Values: a neuro-symbolic approach to value classification
- Title(参考訳): 説明可能な道徳的価値: 価値分類へのニューロシンボリックアプローチ
- Authors: Nicolas Lazzari, Stefano De Giorgis, Aldo Gangemi, Valentina Presutti,
- Abstract要約: 本研究では、オントロジーに基づく推論と、説明可能な値分類のための機械学習技術の統合について検討する。
道徳的価値のオントロジ的形式化をモラル・ファンデーションズ・セオリー(英語版)のように頼りにすることで、テクティサンドラのニューラルシンボリック・リセサイザーは、ある文で満たされる価値を推測するために用いられる。
推理器の推論のみに依存すると、他のより複雑な手法に匹敵する説明可能な分類が得られることを示す。
- 参考スコア(独自算出の注目度): 1.4186974630564675
- License:
- Abstract: This work explores the integration of ontology-based reasoning and Machine Learning techniques for explainable value classification. By relying on an ontological formalization of moral values as in the Moral Foundations Theory, relying on the DnS Ontology Design Pattern, the \textit{sandra} neuro-symbolic reasoner is used to infer values (fomalized as descriptions) that are \emph{satisfied by} a certain sentence. Sentences, alongside their structured representation, are automatically generated using an open-source Large Language Model. The inferred descriptions are used to automatically detect the value associated with a sentence. We show that only relying on the reasoner's inference results in explainable classification comparable to other more complex approaches. We show that combining the reasoner's inferences with distributional semantics methods largely outperforms all the baselines, including complex models based on neural network architectures. Finally, we build a visualization tool to explore the potential of theory-based values classification, which is publicly available at http://xmv.geomeaning.com/.
- Abstract(参考訳): 本研究では、オントロジーに基づく推論と、説明可能な値分類のための機械学習技術の統合について検討する。
モラル・ファンデーションズ理論のように道徳的価値のオントロジ的形式化を頼り、DnSオントロジー・デザイン・パターンを頼りにすることで、ある文によって満たされる価値(記述として芽生えた)を推論するために、 \textit{sandra} のニューロシンボリック・推論器が用いられる。
文は構造化された表現とともに、オープンソースのLarge Language Modelを使って自動的に生成される。
推測された記述は、文に関連付けられた値を自動的に検出するために使用される。
推理器の推論のみに依存すると、他のより複雑な手法に匹敵する説明可能な分類が得られることを示す。
ニューラルネットワークアーキテクチャに基づく複雑なモデルを含むすべてのベースラインにおいて,その推論と分布意味論の手法が大半を上回ることを示す。
最後に、理論に基づく価値分類の可能性を探るための可視化ツールを構築します。
関連論文リスト
- Ontological Relations from Word Embeddings [2.384873896423002]
BERTのような一般的なニューラルモデルから得られる単語埋め込みの類似性は、それらの単語の意味の意味的類似性の形で効果的に近似することが確実に示されている。
これらの埋め込みの上に単純なフィードフォワードアーキテクチャを組み込むことで、入力データに応じて様々な一般化能力を持つ有望な精度が得られることを示す。
論文 参考訳(メタデータ) (2024-08-01T10:31:32Z) - Attri-Net: A Globally and Locally Inherently Interpretable Model for Multi-Label Classification Using Class-Specific Counterfactuals [4.384272169863716]
高度な医療応用において、解釈可能性は機械学習アルゴリズムにとって不可欠である。
Attri-Netは、ローカルおよびグローバルな説明を提供するマルチラベル分類の本質的に解釈可能なモデルである。
論文 参考訳(メタデータ) (2024-06-08T13:52:02Z) - Neural Semantic Parsing with Extremely Rich Symbolic Meaning Representations [7.774674200374255]
分類学的階層におけるその位置に基づく概念のための新しい構成記号表現を導入する。
この表現はよりリッチな意味情報を提供し、解釈可能性を高める。
実験結果から,より豊かで複雑な意味表現に基づいて訓練された分類モデルは,評価基準を用いて従来のモデルに若干従属するが,語彙外概念を扱う場合よりも優れることがわかった。
論文 参考訳(メタデータ) (2024-04-19T08:06:01Z) - Meaning Representations from Trajectories in Autoregressive Models [106.63181745054571]
入力テキストを拡張可能なすべてのトラジェクトリの分布を考慮し,自己回帰言語モデルから意味表現を抽出する。
この戦略はプロンプトフリーであり、微調整は必要とせず、事前訓練された自己回帰モデルにも適用できる。
我々は,大規模なモデルから得られた表現が人間のアノテーションとよく一致し,意味的類似性タスクにおける他のゼロショットおよびプロンプトフリーメソッドよりも優れており,標準埋め込みが扱えないより複雑なエンタテインメントや包含タスクの解決に使用できることを実証的に示す。
論文 参考訳(メタデータ) (2023-10-23T04:35:58Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Hierarchical Interpretation of Neural Text Classification [31.95426448656938]
本稿では,Hintと呼ばれる階層型インタプリタ型ニューラルテキスト分類器を提案する。
レビューデータセットとニュースデータセットの両方の実験結果から,提案手法は既存の最先端テキスト分類器と同等のテキスト分類結果が得られることが示された。
論文 参考訳(メタデータ) (2022-02-20T11:15:03Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - Explainable Deep Classification Models for Domain Generalization [94.43131722655617]
説明は、深い分類網が決定を下す視覚的証拠の領域として定義される。
トレーニング戦略は周期的な正当性に基づくフィードバックを強制し、モデルが地中真実に直接対応する画像領域に焦点を合わせることを奨励する。
論文 参考訳(メタデータ) (2020-03-13T22:22:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。