Real-World Benchmarks Make Membership Inference Attacks Fail on Diffusion Models
- URL: http://arxiv.org/abs/2410.03640v1
- Date: Fri, 4 Oct 2024 17:46:06 GMT
- Title: Real-World Benchmarks Make Membership Inference Attacks Fail on Diffusion Models
- Authors: Chumeng Liang, Jiaxuan You,
- Abstract summary: Membership inference attacks (MIAs) on diffusion models have emerged as potential evidence of unauthorized data usage.
Our study delves into the evaluation of state-of-the-art MIAs on diffusion models and reveals critical flaws and overly optimistic performance estimates.
We introduce CopyMark, a more realistic MIA benchmark that distinguishes itself through the support for pre-trained diffusion models, unbiased datasets, and fair evaluation pipelines.
- Score: 12.386823277082746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Membership inference attacks (MIAs) on diffusion models have emerged as potential evidence of unauthorized data usage in training pre-trained diffusion models. These attacks aim to detect the presence of specific images in training datasets of diffusion models. Our study delves into the evaluation of state-of-the-art MIAs on diffusion models and reveals critical flaws and overly optimistic performance estimates in existing MIA evaluation. We introduce CopyMark, a more realistic MIA benchmark that distinguishes itself through the support for pre-trained diffusion models, unbiased datasets, and fair evaluation pipelines. Through extensive experiments, we demonstrate that the effectiveness of current MIA methods significantly degrades under these more practical conditions. Based on our results, we alert that MIA, in its current state, is not a reliable approach for identifying unauthorized data usage in pre-trained diffusion models. To the best of our knowledge, we are the first to discover the performance overestimation of MIAs on diffusion models and present a unified benchmark for more realistic evaluation. Our code is available on GitHub: \url{https://github.com/caradryanl/CopyMark}.
Related papers
- Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Model [22.39558434131574]
Existing data attribution methods for diffusion models typically quantify the contribution of a training sample.
We argue that the direct usage of diffusion loss cannot represent such a contribution accurately due to the calculation of diffusion loss.
We aim to measure the direct comparison between predicted distributions with an attribution score to analyse the training sample importance.
arXiv Detail & Related papers (2024-10-24T10:58:17Z) - Score Forgetting Distillation: A Swift, Data-Free Method for Machine Unlearning in Diffusion Models [63.43422118066493]
Machine unlearning (MU) is a crucial foundation for developing safe, secure, and trustworthy GenAI models.
Traditional MU methods often rely on stringent assumptions and require access to real data.
This paper introduces Score Forgetting Distillation (SFD), an innovative MU approach that promotes the forgetting of undesirable information in diffusion models.
arXiv Detail & Related papers (2024-09-17T14:12:50Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - Extracting Training Data from Unconditional Diffusion Models [76.85077961718875]
diffusion probabilistic models (DPMs) are being employed as mainstream models for generative artificial intelligence (AI)
We aim to establish a theoretical understanding of memorization in DPMs with 1) a memorization metric for theoretical analysis, 2) an analysis of conditional memorization with informative and random labels, and 3) two better evaluation metrics for measuring memorization.
Based on the theoretical analysis, we propose a novel data extraction method called textbfSurrogate condItional Data Extraction (SIDE) that leverages a trained on generated data as a surrogate condition to extract training data directly from unconditional diffusion models.
arXiv Detail & Related papers (2024-06-18T16:20:12Z) - Model Will Tell: Training Membership Inference for Diffusion Models [15.16244745642374]
Training Membership Inference (TMI) task aims to determine whether a specific sample has been used in the training process of a target model.
In this paper, we explore a novel perspective for the TMI task by leveraging the intrinsic generative priors within the diffusion model.
arXiv Detail & Related papers (2024-03-13T12:52:37Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - When Fairness Meets Privacy: Exploring Privacy Threats in Fair Binary Classifiers via Membership Inference Attacks [17.243744418309593]
We propose an efficient MIA method against fairness-enhanced models based on fairness discrepancy results.
We also explore potential strategies for mitigating privacy leakages.
arXiv Detail & Related papers (2023-11-07T10:28:17Z) - A Probabilistic Fluctuation based Membership Inference Attack for Diffusion Models [32.15773300068426]
Membership Inference Attack (MIA) identifies whether a record exists in a machine learning model's training set by querying the model.
We propose a Probabilistic Fluctuation Assessing Membership Inference Attack (PFAMI)
PFAMI can improve the attack success rate (ASR) by about 27.9% when compared with the best baseline.
arXiv Detail & Related papers (2023-08-23T14:00:58Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - An Efficient Membership Inference Attack for the Diffusion Model by
Proximal Initialization [58.88327181933151]
In this paper, we propose an efficient query-based membership inference attack (MIA)
Experimental results indicate that the proposed method can achieve competitive performance with only two queries on both discrete-time and continuous-time diffusion models.
To the best of our knowledge, this work is the first to study the robustness of diffusion models to MIA in the text-to-speech task.
arXiv Detail & Related papers (2023-05-26T16:38:48Z) - Exploring Continual Learning of Diffusion Models [24.061072903897664]
We evaluate the continual learning (CL) properties of diffusion models.
We provide insights into the dynamics of forgetting, which exhibit diverse behavior across diffusion timesteps.
arXiv Detail & Related papers (2023-03-27T15:52:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.