論文の概要: Geometric Representation Condition Improves Equivariant Molecule Generation
- arxiv url: http://arxiv.org/abs/2410.03655v2
- Date: Mon, 10 Feb 2025 06:34:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 17:37:51.699598
- Title: Geometric Representation Condition Improves Equivariant Molecule Generation
- Title(参考訳): 幾何学的表現条件は等変分子生成を改善する
- Authors: Zian Li, Cai Zhou, Xiyuan Wang, Xingang Peng, Muhan Zhang,
- Abstract要約: 分子生成モデルの性能向上のためのフレームワークであるGeoRCGを紹介する。
分子生成過程を2段階に分解し,まず情報的幾何学的表現を生成する。
我々は、広く使われているQM9およびGEOM-DRUGデータセット上での無条件分子生成タスクの大幅な品質改善を観察した。
- 参考スコア(独自算出の注目度): 24.404588237915732
- License:
- Abstract: Recent advancements in molecular generative models have demonstrated substantial potential in accelerating scientific discovery, particularly in drug design. However, these models often face challenges in generating high-quality molecules, especially in conditional scenarios where specific molecular properties must be satisfied. In this work, we introduce GeoRCG, a general framework to enhance the performance of molecular generative models by integrating geometric representation conditions with provable theoretical guarantees. We decompose the molecule generation process into two stages: first, generating an informative geometric representation; second, generating a molecule conditioned on the representation. Compared to directly generating a molecule, the relatively easy-to-generate representation in the first stage guides the second-stage generation to reach a high-quality molecule in a more goal-oriented and much faster way. Leveraging EDM and SemlaFlow as the base generators, we observe significant quality improvements in unconditional molecule generation tasks on the widely-used QM9 and GEOM-DRUG datasets. More notably, in the challenging conditional molecular generation task, our framework achieves an average 31\% performance improvement over state-of-the-art approaches, highlighting the superiority of conditioning on semantically rich geometric representations over conditioning on individual property values as in previous approaches. Furthermore, we show that, with such representation guidance, the number of diffusion steps can be reduced to as small as 100 while largely preserving the generation quality achieved with 1,000 steps, thereby significantly accelerating the generation process.
- Abstract(参考訳): 分子生成モデルの最近の進歩は、特に薬物設計において、科学的発見を加速させる大きな可能性を示している。
しかしながら、これらのモデルはしばしば、特に特定の分子特性を満たさなければならない条件付きシナリオにおいて、高品質な分子を生成する上で困難に直面する。
本研究は,幾何表現条件と証明可能な理論的保証を統合することにより,分子生成モデルの性能を高めるための一般的なフレームワークであるGeoRCGを紹介する。
分子生成過程を2段階に分解し,まず情報的幾何学的表現を生成する。
分子を直接生成するのと比べ、第1段階の比較的容易に生成できる表現は、よりゴール指向でより高速な方法で高品質な分子に到達するよう第2段階の世代を導く。
本研究では,EDMとSemlaFlowをベースジェネレータとして利用し,広く使用されているQM9およびGEOM-DRUGデータセット上での無条件分子生成タスクの大幅な品質改善を観察する。
さらに, 従来の手法と同様に, 個々の特性値に対する条件付けよりも, 意味的にリッチな幾何学的表現に対する条件付けの方が優れていることを示す。
さらに、このような表現指導により、1000ステップで達成した生成品質を保ちつつ、拡散ステップの数を100まで削減し、生成プロセスを大幅に加速させることができることを示す。
関連論文リスト
- MolMiner: Transformer architecture for fragment-based autoregressive generation of molecular stories [7.366789601705544]
生成過程の化学的妥当性、解釈可能性、可変分子サイズへの柔軟性は、計算材料設計における生成モデルに残る課題の1つである。
本稿では,分子生成を離散的かつ解釈可能なステップの列に分解する自己回帰的手法を提案する。
この結果から,本モデルでは,提案した多目的目標目標に応じて,生成分布を効果的にバイアスすることができることがわかった。
論文 参考訳(メタデータ) (2024-11-10T22:00:55Z) - Rethinking Molecular Design: Integrating Latent Variable and Auto-Regressive Models for Goal Directed Generation [0.6800113478497425]
我々は、分子の最も単純な表現に戻り、古典的生成的アプローチの見過ごされた制限を調査する。
本稿では, 分子配列の妥当性, 条件生成, スタイル伝達を改善するために, 両者の強みを生かした, 新規な正則化器の形でのハイブリッドモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T11:50:23Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
分子生成のための階層型テキスト変換法 (HI-Mol) を提案する。
HI-Molは分子分布を理解する上での階層的情報、例えば粗い特徴ときめ細かい特徴の重要性にインスパイアされている。
単一レベルトークン埋め込みを用いた画像領域の従来のテキストインバージョン法と比較して, マルチレベルトークン埋め込みにより, 基礎となる低ショット分子分布を効果的に学習することができる。
論文 参考訳(メタデータ) (2024-05-05T08:35:23Z) - Field-based Molecule Generation [50.124402120798365]
本稿では,本手法の柔軟性が,一般的なポイントクラウド方式よりも重要な利点をもたらすことを示す。
我々は、薬物の安全性と有効性に欠落した分子特性である光学異性体(エナンチオマー)に取り組む。
論文 参考訳(メタデータ) (2024-02-24T17:13:58Z) - Pre-training of Molecular GNNs via Conditional Boltzmann Generator [0.0]
分子配座のデータセットを用いた分子GNNの事前学習法を提案する。
本モデルは,既存の事前学習法よりも分子特性の予測性能がよいことを示す。
論文 参考訳(メタデータ) (2023-12-20T15:30:15Z) - Improving Molecular Properties Prediction Through Latent Space Fusion [9.912768918657354]
本稿では,最先端の化学モデルから導出した潜在空間を組み合わせた多視点手法を提案する。
分子構造をグラフとして表現するMHG-GNNの埋め込みと、化学言語に根ざしたMoLFormerの埋め込みである。
本稿では,既存の最先端手法と比較して,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-20T20:29:32Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - MolHF: A Hierarchical Normalizing Flow for Molecular Graph Generation [4.517805235253331]
MolHFは分子グラフを粗い方法で生成する新しい階層型フローベースモデルである。
MolHFは100以上の重原子を持つより大きな分子(ポリマー)をモデル化するための最初のフローベースモデルである。
論文 参考訳(メタデータ) (2023-05-15T08:59:35Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。