Linear Independence of Generalized Neurons and Related Functions
- URL: http://arxiv.org/abs/2410.03693v1
- Date: Sun, 22 Sep 2024 21:09:15 GMT
- Title: Linear Independence of Generalized Neurons and Related Functions
- Authors: Leyang Zhang,
- Abstract summary: Linear independence of neurons plays a significant role in theoretical analysis of neural networks.
We study the problem for neurons with arbitrary layers and widths, giving a simple but complete characterization for generic analytic activation functions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The linear independence of neurons plays a significant role in theoretical analysis of neural networks. Specifically, given neurons $H_1, ..., H_n: \bR^N \times \bR^d \to \bR$, we are interested in the following question: when are $\{H_1(\theta_1, \cdot), ..., H_n(\theta_n, \cdot)\}$ are linearly independent as the parameters $\theta_1, ..., \theta_n$ of these functions vary over $\bR^N$. Previous works give a complete characterization of two-layer neurons without bias, for generic smooth activation functions. In this paper, we study the problem for neurons with arbitrary layers and widths, giving a simple but complete characterization for generic analytic activation functions.
Related papers
- Optimal Neural Network Approximation for High-Dimensional Continuous Functions [5.748690310135373]
We present a family of continuous functions that requires at least width $d$, and therefore at least $d$ intrinsic neurons, to achieve arbitrary accuracy in its approximation.
This shows that the requirement of $mathcalO(d)$ intrinsic neurons is optimal in the sense that it grows linearly with the input dimension $d$.
arXiv Detail & Related papers (2024-09-04T01:18:55Z) - Interpreting the Second-Order Effects of Neurons in CLIP [73.54377859089801]
We interpret the function of individual neurons in CLIP by automatically describing them using text.
We present the "second-order lens", analyzing the effect flowing from a neuron through the later attention heads, directly to the output.
Our results indicate that a scalable understanding of neurons can be used for model deception and for introducing new model capabilities.
arXiv Detail & Related papers (2024-06-06T17:59:52Z) - Interpolation with deep neural networks with non-polynomial activations: necessary and sufficient numbers of neurons [0.0]
We prove that $Theta(sqrtnd')$ neurons are sufficient as long as the activation function is real at a point and not a point and not a there.
This means that activation functions can be freely chosen in a problem-dependent manner without loss of power.
arXiv Detail & Related papers (2024-05-22T15:29:45Z) - Two-argument activation functions learn soft XOR operations like
cortical neurons [6.88204255655161]
We learn canonical activation functions with two input arguments, analogous to basal and apical dendrites.
Remarkably, the resultant nonlinearities often produce soft XOR functions.
Networks with these nonlinearities learn faster and perform better than conventional ReLU nonlinearities with matched parameter counts.
arXiv Detail & Related papers (2021-10-13T17:06:20Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - Deep neural network approximation of analytic functions [91.3755431537592]
entropy bound for the spaces of neural networks with piecewise linear activation functions.
We derive an oracle inequality for the expected error of the considered penalized deep neural network estimators.
arXiv Detail & Related papers (2021-04-05T18:02:04Z) - Estimating Multiplicative Relations in Neural Networks [0.0]
We will use properties of logarithmic functions to propose a pair of activation functions which can translate products into linear expression and learn using backpropagation.
We will try to generalize this approach for some complex arithmetic functions and test the accuracy on a disjoint distribution with the training set.
arXiv Detail & Related papers (2020-10-28T14:28:24Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Compositional Explanations of Neurons [52.71742655312625]
We describe a procedure for explaining neurons in deep representations by identifying compositional logical concepts.
We use this procedure to answer several questions on interpretability in models for vision and natural language processing.
arXiv Detail & Related papers (2020-06-24T20:37:05Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z) - Learning Neural Activations [2.842794675894731]
We explore what happens when the activation function of each neuron in an artificial neural network is learned from data alone.
This is achieved by modelling the activation function of each neuron as a small neural network whose weights are shared by all neurons in the original network.
arXiv Detail & Related papers (2019-12-27T15:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.