On the SAGA algorithm with decreasing step
- URL: http://arxiv.org/abs/2410.03760v1
- Date: Wed, 2 Oct 2024 12:04:36 GMT
- Title: On the SAGA algorithm with decreasing step
- Authors: Luis Fredes, Bernard Bercu, Eméric Gbaguidi,
- Abstract summary: We introduce a new $lambda$-SAGA algorithm which interpolates between the Gradient Descent and SAGA algorithms.
We establish a central limit theorem for the $lambda$-SAGA algorithm.
We provide the non-asymptotic $mathbbLp$ rates of convergence.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic optimization naturally appear in many application areas, including machine learning. Our goal is to go further in the analysis of the Stochastic Average Gradient Accelerated (SAGA) algorithm. To achieve this, we introduce a new $\lambda$-SAGA algorithm which interpolates between the Stochastic Gradient Descent ($\lambda=0$) and the SAGA algorithm ($\lambda=1$). Firstly, we investigate the almost sure convergence of this new algorithm with decreasing step which allows us to avoid the restrictive strong convexity and Lipschitz gradient hypotheses associated to the objective function. Secondly, we establish a central limit theorem for the $\lambda$-SAGA algorithm. Finally, we provide the non-asymptotic $\mathbb{L}^p$ rates of convergence.
Related papers
- Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - A Cubic-regularized Policy Newton Algorithm for Reinforcement Learning [9.628032156001073]
We propose two policy Newton algorithms that incorporate cubic regularization.
Both algorithms employ the likelihood ratio method to form estimates of the gradient and Hessian of the value function.
In particular, the sample complexity of our algorithms to find an $epsilon$-SOSP is $O(epsilon-3.5)$, which is an improvement over the state-of-the-art sample complexity of $O(epsilon-4.5)$.
arXiv Detail & Related papers (2023-04-21T13:43:06Z) - Accelerated SGD for Non-Strongly-Convex Least Squares [14.010916616909743]
We consider approximation for the least squares regression problem in the non-strongly convex setting.
We present the first practical algorithm that achieves the optimal prediction error rates in terms of dependence on the noise of the problem.
arXiv Detail & Related papers (2022-03-03T14:39:33Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
We propose a new algorithm -- the Momentum- Single-timescale Approximation (MSTSA) -- for tackling problems.
MSTSA allows us to control the error in iterations due to inaccurate solution to the lower level subproblem.
arXiv Detail & Related papers (2021-02-15T07:10:33Z) - On the Last Iterate Convergence of Momentum Methods [32.60494006038902]
We prove for the first time that for any constant momentum factor, there exists a Lipschitz and convex function for which the last iterate suffers from an error.
We show that in the setting with convex and smooth functions, our new SGDM algorithm automatically converges at a rate of $O(fraclog TT)$.
arXiv Detail & Related papers (2021-02-13T21:16:16Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
This paper analyzes the trajectories of gradient descent (SGD)
We show that SGD avoids saddle points/manifolds with $1$ for strict step-size policies.
arXiv Detail & Related papers (2020-06-19T14:11:26Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.