論文の概要: Human-Based Risk Model for Improved Driver Support in Interactive Driving Scenarios
- arxiv url: http://arxiv.org/abs/2410.03774v1
- Date: Thu, 3 Oct 2024 02:10:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 16:30:33.261546
- Title: Human-Based Risk Model for Improved Driver Support in Interactive Driving Scenarios
- Title(参考訳): 対話型運転シナリオにおけるドライバサポート改善のためのヒューマンベースリスクモデル
- Authors: Tim Puphal, Benedict Flade, Matti Krüger, Ryohei Hirano, Akihito Kimata,
- Abstract要約: 運転支援の改善にドライバ情報を利用する人間型リスクモデルを提案する。
大規模なシミュレーションでは,新たな人為的リスクモデルが早期の警告時間を実現し,警告エラーの低減を図っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of human-based driver support. Nowadays, driver support systems help users to operate safely in many driving situations. Nevertheless, these systems do not fully use the rich information that is available from sensing the human driver. In this paper, we therefore present a human-based risk model that uses driver information for improved driver support. In contrast to state of the art, our proposed risk model combines a) the current driver perception based on driver errors, such as the driver overlooking another vehicle (i.e., notice error), and b) driver personalization, such as the driver being defensive or confident. In extensive simulations of multiple interactive driving scenarios, we show that our novel human-based risk model achieves earlier warning times and reduced warning errors compared to a baseline risk model not using human driver information.
- Abstract(参考訳): 本稿では,人間による運転支援の問題に対処する。
今日では、運転支援システムは、多くの運転状況で安全に運転するのに役立つ。
しかしながら、これらのシステムは人間のドライバーを感知することで得られる豊富な情報を十分に利用していない。
そこで本稿では,運転支援の改善にドライバ情報を利用する人間型リスクモデルを提案する。
最先端とは対照的に,提案したリスクモデルが組み合わさっている。
a) 運転ミスに基づく現在の運転者の認識(例えば、他の車両を見渡す運転者など)、及び
b) ドライバが防衛的又は自信を有するようなドライバのパーソナライゼーション
対話型運転シナリオの広範囲なシミュレーションでは,人間の運転情報を使用しないベースラインリスクモデルと比較して,新たな人的リスクモデルが早期の警告時間を実現し,警告エラーを低減できることが示されている。
関連論文リスト
- Reducing Warning Errors in Driver Support with Personalized Risk Maps [1.4230646728710978]
本稿では,運転者の行動に基づいて,運転者のパーソナライズされた危険因子を推定する警告システムを提案する。
システムはその後、個人化されたリスクマップで警告信号を適応することができる。
論文 参考訳(メタデータ) (2024-10-03T02:13:40Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Context-Aware Quantitative Risk Assessment Machine Learning Model for
Drivers Distraction [0.0]
MDDRA(Multi-class Driver Distraction Risk Assessment)モデルは、旅行中の車両、運転者、環境データを考慮したモデルである。
MDDRAは、危険行列上のドライバーを安全、不注意、危険と分類する。
我々は、重度レベルに応じて運転者の気晴らしを分類し、予測するために機械学習技術を適用した。
論文 参考訳(メタデータ) (2024-02-20T23:20:36Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Considering Human Factors in Risk Maps for Robust and Foresighted Driver
Warning [1.4699455652461728]
本稿では,ドライバーエラーの形で人間の状態を利用する警告システムを提案する。
このシステムは、周囲の運転状況の予測を直接変更する行動プランナーのリスクマップで構成されている。
動的車線変化と交差点シナリオの異なるシミュレーションでは、運転者の行動計画がいかに危険になるかを示す。
論文 参考訳(メタデータ) (2023-06-06T16:39:58Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
本稿では,より正確かつ人間らしく運転できるエンド・ツー・エンド駆動モデルについて検討する。
HERE Technologiesのセマンティックマップとビジュアルマップを活用し、既存のDrive360データセットを拡張します。
私たちのモデルは、実世界の運転データ60時間3000kmのDrive360+HEREデータセットでトレーニングされ、評価されています。
論文 参考訳(メタデータ) (2020-07-10T22:25:27Z) - Who Make Drivers Stop? Towards Driver-centric Risk Assessment: Risk
Object Identification via Causal Inference [19.71459945458985]
運転者中心のリスク定義,すなわち運転者の行動に影響を与えるオブジェクトは危険である。
提案するオブジェクトレベルの操作可能な駆動モデルを用いた因果推論に基づく新しい2段階リスクオブジェクト識別フレームワークを提案する。
当社のフレームワークは,強力なベースラインに対するパフォーマンスを7.5%向上させています。
論文 参考訳(メタデータ) (2020-03-05T04:14:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。