Parameter Estimation of Long Memory Stochastic Processes with Deep Neural Networks
- URL: http://arxiv.org/abs/2410.03776v1
- Date: Thu, 3 Oct 2024 03:14:58 GMT
- Title: Parameter Estimation of Long Memory Stochastic Processes with Deep Neural Networks
- Authors: Bálint Csanády, Lóránt Nagy, Dániel Boros, Iván Ivkovic, Dávid Kovács, Dalma Tóth-Lakits, László Márkus, András Lukács,
- Abstract summary: We present a purely deep neural network-based approach for estimating long memory parameters of time series models.
Parameters, such as the Hurst exponent, are critical in characterizing the long-range dependence, roughness, and self-similarity of processes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a purely deep neural network-based approach for estimating long memory parameters of time series models that incorporate the phenomenon of long-range dependence. Parameters, such as the Hurst exponent, are critical in characterizing the long-range dependence, roughness, and self-similarity of stochastic processes. The accurate and fast estimation of these parameters holds significant importance across various scientific disciplines, including finance, physics, and engineering. We harnessed efficient process generators to provide high-quality synthetic training data, enabling the training of scale-invariant 1D Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) models. Our neural models outperform conventional statistical methods, even those augmented with neural networks. The precision, speed, consistency, and robustness of our estimators are demonstrated through experiments involving fractional Brownian motion (fBm), the Autoregressive Fractionally Integrated Moving Average (ARFIMA) process, and the fractional Ornstein-Uhlenbeck (fOU) process. We believe that our work will inspire further research in the field of stochastic process modeling and parameter estimation using deep learning techniques.
Related papers
- Deep learning the Hurst parameter of linear fractional processes and
assessing its reliability [0.0]
The study focuses on three types of processes: fractional Brownian motion (fBm), fractional Ornstein-Uhlenbeck (fOU) process, and linear fractional stable motions (lfsm)
The work involves a fast generation of extensive datasets for fBm and fOU to train the LSTM network on a large volume of data in a feasible time.
It finds that LSTM outperforms the traditional statistical methods in the case of fBm and fOU processes; however, it has limited accuracy on lfsm processes.
arXiv Detail & Related papers (2024-01-03T15:42:45Z) - Robust Neural Pruning with Gradient Sampling Optimization for Residual Neural Networks [0.0]
This research embarks on pioneering the integration of gradient sampling optimization techniques, particularly StochGradAdam, into the pruning process of neural networks.
Our main objective is to address the significant challenge of maintaining accuracy in pruned neural models, critical in resource-constrained scenarios.
arXiv Detail & Related papers (2023-12-26T12:19:22Z) - Deep Learning for Fast Inference of Mechanistic Models' Parameters [0.28675177318965045]
We propose using Deep Neural Networks (NN) for directly predicting parameters of mechanistic models given observations.
We consider a training procedure that combines Neural Networks and mechanistic models.
We find that, while Neural Network estimates are slightly improved by further fitting, these estimates are measurably better than the fitting procedure alone.
arXiv Detail & Related papers (2023-12-05T22:16:54Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Neural parameter calibration for large-scale multi-agent models [0.7734726150561089]
We present a method to retrieve accurate probability densities for parameters using neural equations.
The two combined create a powerful tool that can quickly estimate densities on model parameters, even for very large systems.
arXiv Detail & Related papers (2022-09-27T17:36:26Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z) - Automated Deep Abstractions for Stochastic Chemical Reaction Networks [0.0]
Low-level chemical reaction network (CRN) models give raise to a highly-dimensional continuous-time Markov chain (CTMC)
A recently proposed abstraction method uses deep learning to replace this CTMC with a discrete-time continuous-space process.
In this paper, we propose to further automatise deep abstractions for CRNs, through learning the optimal neural network architecture.
arXiv Detail & Related papers (2020-01-30T13:49:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.