Local Attention Mechanism: Boosting the Transformer Architecture for Long-Sequence Time Series Forecasting
- URL: http://arxiv.org/abs/2410.03805v2
- Date: Sun, 13 Oct 2024 16:45:51 GMT
- Title: Local Attention Mechanism: Boosting the Transformer Architecture for Long-Sequence Time Series Forecasting
- Authors: Ignacio Aguilera-Martos, Andrés Herrera-Poyatos, Julián Luengo, Francisco Herrera,
- Abstract summary: Local Attention Mechanism (LAM) is an efficient attention mechanism tailored for time series analysis.
LAM exploits the continuity properties of time series to reduce the number of attention scores computed.
We present an algorithm for implementing LAM in algebra tensor that runs in time and memory O(nlogn)
- Score: 8.841114905151152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformers have become the leading choice in natural language processing over other deep learning architectures. This trend has also permeated the field of time series analysis, especially for long-horizon forecasting, showcasing promising results both in performance and running time. In this paper, we introduce Local Attention Mechanism (LAM), an efficient attention mechanism tailored for time series analysis. This mechanism exploits the continuity properties of time series to reduce the number of attention scores computed. We present an algorithm for implementing LAM in tensor algebra that runs in time and memory O(nlogn), significantly improving upon the O(n^2) time and memory complexity of traditional attention mechanisms. We also note the lack of proper datasets to evaluate long-horizon forecast models. Thus, we propose a novel set of datasets to improve the evaluation of models addressing long-horizon forecasting challenges. Our experimental analysis demonstrates that the vanilla transformer architecture magnified with LAM surpasses state-of-the-art models, including the vanilla attention mechanism. These results confirm the effectiveness of our approach and highlight a range of future challenges in long-sequence time series forecasting.
Related papers
- Test Time Learning for Time Series Forecasting [1.4605709124065924]
Test-Time Training (TTT) modules consistently outperform state-of-the-art models, including the Mamba-based TimeMachine.
Our results show significant improvements in Mean Squared Error (MSE) and Mean Absolute Error (MAE)
This work sets a new benchmark for time-series forecasting and lays the groundwork for future research in scalable, high-performance forecasting models.
arXiv Detail & Related papers (2024-09-21T04:40:08Z) - Attention as Robust Representation for Time Series Forecasting [23.292260325891032]
Time series forecasting is essential for many practical applications.
Transformers' key feature, the attention mechanism, dynamically fusing embeddings to enhance data representation, often relegating attention weights to a byproduct role.
Our approach elevates attention weights as the primary representation for time series, capitalizing on the temporal relationships among data points to improve forecasting accuracy.
arXiv Detail & Related papers (2024-02-08T03:00:50Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - An Attention Free Long Short-Term Memory for Time Series Forecasting [0.0]
We focused on time series forecasting using attention free mechanism, a more efficient framework, and proposed a new architecture for time series prediction.
We proposed an architecture built using attention free LSTM layers that overcome linear models for conditional variance prediction.
arXiv Detail & Related papers (2022-09-20T08:23:49Z) - ETSformer: Exponential Smoothing Transformers for Time-series
Forecasting [35.76867542099019]
We propose ETSFormer, a novel time-series Transformer architecture, which exploits the principle of exponential smoothing in improving Transformers for time-series forecasting.
In particular, inspired by the classical exponential smoothing methods in time-series forecasting, we propose the novel exponential smoothing attention (ESA) and frequency attention (FA) to replace the self-attention mechanism in vanilla Transformers, thus improving both accuracy and efficiency.
arXiv Detail & Related papers (2022-02-03T02:50:44Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
We propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module.
By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns.
Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise.
arXiv Detail & Related papers (2021-07-13T11:08:47Z) - Autoformer: Decomposition Transformers with Auto-Correlation for
Long-Term Series Forecasting [68.86835407617778]
Autoformer is a novel decomposition architecture with an Auto-Correlation mechanism.
In long-term forecasting, Autoformer yields state-of-the-art accuracy, with a relative improvement on six benchmarks.
arXiv Detail & Related papers (2021-06-24T13:43:43Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
We present Model-Attentive Ensemble learning for Sequence modeling (MAES)
MAES is a mixture of time-series experts which leverages an attention-based gating mechanism to specialize the experts on different sequence dynamics and adaptively weight their predictions.
We demonstrate that MAES significantly out-performs popular sequence models on datasets subject to temporal shift.
arXiv Detail & Related papers (2021-02-23T05:23:35Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Spatiotemporal Attention for Multivariate Time Series Prediction and
Interpretation [17.568599402858037]
temporal attention mechanism (STAM) for simultaneous learning of the most important time steps and variables.
Results: STAM maintains state-of-the-art prediction accuracy while offering the benefit of accurate interpretability.
arXiv Detail & Related papers (2020-08-11T17:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.