EvenNICER-SLAM: Event-based Neural Implicit Encoding SLAM
- URL: http://arxiv.org/abs/2410.03812v1
- Date: Fri, 4 Oct 2024 13:52:01 GMT
- Title: EvenNICER-SLAM: Event-based Neural Implicit Encoding SLAM
- Authors: Shi Chen, Danda Pani Paudel, Luc Van Gool,
- Abstract summary: We propose EvenNICER-SLAM, a novel approach to dense visual simultaneous localization and mapping.
EvenNICER-SLAM incorporates event cameras that respond to intensity changes instead of absolute brightness.
Our results suggest the potential for event cameras to improve the robustness of dense SLAM systems against fast camera motion in real-world scenarios.
- Score: 69.83383687049994
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The advancement of dense visual simultaneous localization and mapping (SLAM) has been greatly facilitated by the emergence of neural implicit representations. Neural implicit encoding SLAM, a typical example of which is NICE-SLAM, has recently demonstrated promising results in large-scale indoor scenes. However, these methods typically rely on temporally dense RGB-D image streams as input in order to function properly. When the input source does not support high frame rates or the camera movement is too fast, these methods often experience crashes or significant degradation in tracking and mapping accuracy. In this paper, we propose EvenNICER-SLAM, a novel approach that addresses this issue through the incorporation of event cameras. Event cameras are bio-inspired cameras that respond to intensity changes instead of absolute brightness. Specifically, we integrated an event loss backpropagation stream into the NICE-SLAM pipeline to enhance camera tracking with insufficient RGB-D input. We found through quantitative evaluation that EvenNICER-SLAM, with an inclusion of higher-frequency event image input, significantly outperforms NICE-SLAM with reduced RGB-D input frequency. Our results suggest the potential for event cameras to improve the robustness of dense SLAM systems against fast camera motion in real-world scenarios.
Related papers
- Deblur e-NeRF: NeRF from Motion-Blurred Events under High-speed or Low-light Conditions [56.84882059011291]
We propose Deblur e-NeRF, a novel method to reconstruct blur-minimal NeRFs from motion-red events.
We also introduce a novel threshold-normalized total variation loss to improve the regularization of large textureless patches.
arXiv Detail & Related papers (2024-09-26T15:57:20Z) - NID-SLAM: Neural Implicit Representation-based RGB-D SLAM in dynamic environments [9.706447888754614]
We present NID-SLAM, which significantly improves the performance of neural SLAM in dynamic environments.
We propose a new approach to enhance inaccurate regions in semantic masks, particularly in marginal areas.
We also introduce a selection strategy for dynamic scenes, which enhances camera tracking robustness against large-scale objects.
arXiv Detail & Related papers (2024-01-02T12:35:03Z) - Implicit Event-RGBD Neural SLAM [54.74363487009845]
Implicit neural SLAM has achieved remarkable progress recently.
Existing methods face significant challenges in non-ideal scenarios.
We propose EN-SLAM, the first event-RGBD implicit neural SLAM framework.
arXiv Detail & Related papers (2023-11-18T08:48:58Z) - Robust e-NeRF: NeRF from Sparse & Noisy Events under Non-Uniform Motion [67.15935067326662]
Event cameras offer low power, low latency, high temporal resolution and high dynamic range.
NeRF is seen as the leading candidate for efficient and effective scene representation.
We propose Robust e-NeRF, a novel method to directly and robustly reconstruct NeRFs from moving event cameras.
arXiv Detail & Related papers (2023-09-15T17:52:08Z) - NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM [111.83168930989503]
NICER-SLAM is a dense RGB SLAM system that simultaneously optimize for camera poses and a hierarchical neural implicit map representation.
We show strong performance in dense mapping, tracking, and novel view synthesis, even competitive with recent RGB-D SLAM systems.
arXiv Detail & Related papers (2023-02-07T17:06:34Z) - ESLAM: Efficient Dense SLAM System Based on Hybrid Representation of
Signed Distance Fields [2.0625936401496237]
ESLAM reads RGB-D frames with unknown camera poses in a sequential manner and incrementally reconstructs the scene representation.
ESLAM improves the accuracy of 3D reconstruction and camera localization of state-of-the-art dense visual SLAM methods by more than 50%.
arXiv Detail & Related papers (2022-11-21T18:25:14Z) - Research on Event Accumulator Settings for Event-Based SLAM [6.830610030874817]
Event cameras have advantages of high dynamic range and no motion blur.
We conduct research on how to accumulate event frames to achieve a better event-based SLAM performance.
Experiment results show that our method can achieve better performance in most sequences compared with the state-of-the-art event frame based SLAM algorithm.
arXiv Detail & Related papers (2021-12-01T11:35:17Z) - ESL: Event-based Structured Light [62.77144631509817]
Event cameras are bio-inspired sensors providing significant advantages over standard cameras.
We propose a novel structured-light system using an event camera to tackle the problem of accurate and high-speed depth sensing.
arXiv Detail & Related papers (2021-11-30T15:47:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.