Why Fine-Tuning Struggles with Forgetting in Machine Unlearning? Theoretical Insights and a Remedial Approach
- URL: http://arxiv.org/abs/2410.03833v1
- Date: Fri, 4 Oct 2024 18:01:52 GMT
- Title: Why Fine-Tuning Struggles with Forgetting in Machine Unlearning? Theoretical Insights and a Remedial Approach
- Authors: Meng Ding, Jinhui Xu, Kaiyi Ji,
- Abstract summary: Fine-tuning (FT) methods have become one of the fundamental approaches for approximating unlearning.
We present the first theoretical analysis of FT methods for machine unlearning within a linear regression framework.
We propose a theoretical approach to mitigate the retention of forgetting data in the pretrained model.
- Score: 19.307968983872588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Unlearning has emerged as a significant area of research, focusing on 'removing' specific subsets of data from a trained model. Fine-tuning (FT) methods have become one of the fundamental approaches for approximating unlearning, as they effectively retain model performance. However, it is consistently observed that naive FT methods struggle to forget the targeted data. In this paper, we present the first theoretical analysis of FT methods for machine unlearning within a linear regression framework, providing a deeper exploration of this phenomenon. We investigate two scenarios with distinct features and overlapping features. Our findings reveal that FT models can achieve zero remaining loss yet fail to forget the forgetting data, unlike golden models (trained from scratch without the forgetting data). This analysis reveals that naive FT methods struggle with forgetting because the pretrained model retains information about the forgetting data, and the fine-tuning process has no impact on this retained information. To address this issue, we first propose a theoretical approach to mitigate the retention of forgetting data in the pretrained model. Our analysis shows that removing the forgetting data's influence allows FT models to match the performance of the golden model. Building on this insight, we introduce a discriminative regularization term to practically reduce the unlearning loss gap between the fine-tuned model and the golden model. Our experiments on both synthetic and real-world datasets validate these theoretical insights and demonstrate the effectiveness of the proposed regularization method.
Related papers
- Physics-Driven Self-Supervised Deep Learning for Free-Surface Multiple Elimination [3.3244277562036095]
In geophysics, deep learning (DL) methods are commonly based on supervised learning from large amounts of high-quality labelled data.
We propose a method in which the DL model learns to effectively parameterize the free-surface multiple-free wavefield from the full wavefield by incorporating the underlying physics into the loss computation.
This, in turn, yields high-quality estimates without ever being shown any ground truth data.
arXiv Detail & Related papers (2025-01-26T15:37:23Z) - Machine Unlearning on Pre-trained Models by Residual Feature Alignment Using LoRA [15.542668474378633]
We propose a novel and efficient machine unlearning method on pre-trained models.
We leverage LoRA to decompose the model's intermediate features into pre-trained features and residual features.
The method aims to learn the zero residuals on the retained set and shifted residuals on the unlearning set.
arXiv Detail & Related papers (2024-11-13T08:56:35Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Distribution Learning for Molecular Regression [10.96062816455682]
Distributional Mixture of Experts (DMoE) is a model-independent, and data-independent method for regression.
We evaluate the performance of DMoE on different molecular property prediction datasets.
arXiv Detail & Related papers (2024-07-30T00:21:51Z) - Extracting Training Data from Unconditional Diffusion Models [76.85077961718875]
diffusion probabilistic models (DPMs) are being employed as mainstream models for generative artificial intelligence (AI)
We aim to establish a theoretical understanding of memorization in DPMs with 1) a memorization metric for theoretical analysis, 2) an analysis of conditional memorization with informative and random labels, and 3) two better evaluation metrics for measuring memorization.
Based on the theoretical analysis, we propose a novel data extraction method called textbfSurrogate condItional Data Extraction (SIDE) that leverages a trained on generated data as a surrogate condition to extract training data directly from unconditional diffusion models.
arXiv Detail & Related papers (2024-06-18T16:20:12Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z) - Negative Preference Optimization: From Catastrophic Collapse to Effective Unlearning [28.059563581973432]
Large Language Models (LLMs) often have sensitive, private, or copyrighted data during pre-training.
LLMs unlearning aims to eliminate the influence of undesirable data from the pre-trained model.
We propose Negative Preference Optimization (NPO) as a simple alignment-inspired method that could efficiently unlearn a target dataset.
arXiv Detail & Related papers (2024-04-08T21:05:42Z) - The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning [37.387280102209274]
offline reinforcement learning aims to enable agents to be trained from pre-collected datasets, however, this comes with the added challenge of estimating the value of behavior not covered in the dataset.
Model-based methods offer a solution by allowing agents to collect additional synthetic data via rollouts in a learned dynamics model.
However, if the learned dynamics model is replaced by the true error-free dynamics, existing model-based methods completely fail.
We propose Reach-Aware Value Learning (RAVL), a simple and robust method that directly addresses the edge-of-reach problem.
arXiv Detail & Related papers (2024-02-19T20:38:00Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
Key challenge in unlearning is forgetting the necessary data in a timely manner, while preserving model performance.
In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.
We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - AST: Effective Dataset Distillation through Alignment with Smooth and
High-Quality Expert Trajectories [18.266786462036553]
We propose an effective DD framework named AST, standing for Alignment with Smooth and high-quality expert Trajectories.
We conduct extensive experiments on datasets of different scales, sizes, and resolutions.
arXiv Detail & Related papers (2023-10-16T16:13:53Z) - Machine Unlearning Methodology base on Stochastic Teacher Network [33.763901254862766]
"Right to be forgotten" grants data owners the right to actively withdraw data that has been used for model training.
Existing machine unlearning methods have been found to be ineffective in quickly removing knowledge from deep learning models.
This paper proposes using a network as a teacher to expedite the mitigation of the influence caused by forgotten data on the model.
arXiv Detail & Related papers (2023-08-28T06:05:23Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Bias-inducing geometries: an exactly solvable data model with fairness implications [12.532003449620607]
We introduce an exactly solvable high-dimensional model of data imbalance.
We analytically unpack the typical properties of learning models trained in this synthetic framework.
We obtain exact predictions for the observables that are commonly employed for fairness assessment.
arXiv Detail & Related papers (2022-05-31T16:27:57Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Variational Bayesian Unlearning [54.26984662139516]
We study the problem of approximately unlearning a Bayesian model from a small subset of the training data to be erased.
We show that it is equivalent to minimizing an evidence upper bound which trades off between fully unlearning from erased data vs. not entirely forgetting the posterior belief.
In model training with VI, only an approximate (instead of exact) posterior belief given the full data can be obtained, which makes unlearning even more challenging.
arXiv Detail & Related papers (2020-10-24T11:53:00Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
spectral-based subspace learning is a common data preprocessing step in many machine learning pipelines.
Most subspace learning methods do not take into consideration possible measurement inaccuracies or artifacts that can lead to data with high uncertainty.
arXiv Detail & Related papers (2020-09-01T15:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.