ORAssistant: A Custom RAG-based Conversational Assistant for OpenROAD
- URL: http://arxiv.org/abs/2410.03845v1
- Date: Fri, 4 Oct 2024 18:22:58 GMT
- Title: ORAssistant: A Custom RAG-based Conversational Assistant for OpenROAD
- Authors: Aviral Kaintura, Palaniappan R, Shui Song Luar, Indira Iyer Almeida,
- Abstract summary: ORAssistant, a conversational assistant for OpenROAD, based on Retrieval-Augmented Generation (RAG)
ORAssistant aims to improve the user experience for the OpenROAD flow, from RTL-GDSII by providing context-specific responses to common user queries.
We use Google Gemini as the base LLM model to build and test ORAssistant.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-source Electronic Design Automation (EDA) tools are rapidly transforming chip design by addressing key barriers of commercial EDA tools such as complexity, costs, and access. Recent advancements in Large Language Models (LLMs) have further enhanced efficiency in chip design by providing user assistance across a range of tasks like setup, decision-making, and flow automation. This paper introduces ORAssistant, a conversational assistant for OpenROAD, based on Retrieval-Augmented Generation (RAG). ORAssistant aims to improve the user experience for the OpenROAD flow, from RTL-GDSII by providing context-specific responses to common user queries, including installation, command usage, flow setup, and execution, in prose format. Currently, ORAssistant integrates OpenROAD, OpenROAD-flow-scripts, Yosys, OpenSTA, and KLayout. The data model is built from publicly available documentation and GitHub resources. The proposed architecture is scalable, supporting extensions to other open-source tools, operating modes, and LLM models. We use Google Gemini as the base LLM model to build and test ORAssistant. Early evaluation results of the RAG-based model show notable improvements in performance and accuracy compared to non-fine-tuned LLMs.
Related papers
- OpenR: An Open Source Framework for Advanced Reasoning with Large Language Models [61.14336781917986]
We introduce OpenR, an open-source framework for enhancing the reasoning capabilities of large language models (LLMs)
OpenR unifies data acquisition, reinforcement learning training, and non-autoregressive decoding into a cohesive software platform.
Our work is the first to provide an open-source framework that explores the core techniques of OpenAI's o1 model with reinforcement learning.
arXiv Detail & Related papers (2024-10-12T23:42:16Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - Open-RAG: Enhanced Retrieval-Augmented Reasoning with Open-Source Large Language Models [23.68266151581951]
Retrieval-Augmented Generation (RAG) has been shown to enhance the factual accuracy of Large Language Models (LLMs)
Existing methods often suffer from limited reasoning capabilities in effectively using the retrieved evidence.
We introduce a novel framework, Open-RAG, designed to enhance reasoning capabilities in RAG with open-source LLMs.
arXiv Detail & Related papers (2024-10-02T17:37:18Z) - Rome was Not Built in a Single Step: Hierarchical Prompting for LLM-based Chip Design [22.70660876673987]
Large Language Models (LLMs) are effective in computer hardware synthesis via hardware description language (HDL) generation.
However, LLM-assisted approaches for HDL generation struggle when handling complex tasks.
We introduce a suite of hierarchical prompting techniques which facilitate efficient stepwise design methods.
arXiv Detail & Related papers (2024-07-23T21:18:31Z) - Customized Retrieval Augmented Generation and Benchmarking for EDA Tool Documentation QA [5.0108982850526]
Retrieval augmented generation (RAG) enhances the accuracy and reliability of generative AI models by sourcing factual information from external databases.
This paper proposes a customized RAG framework along with three domain-specific techniques for EDA tool documentation QA.
We have developed and released a documentation QA evaluation benchmark, ORD-QA, for OpenROAD, an advanced RTL-to-GDSII design platform.
arXiv Detail & Related papers (2024-07-22T03:44:27Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
We present a framework for intuitive robot programming by non-experts.
We leverage natural language prompts and contextual information from the Robot Operating System (ROS)
Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface.
arXiv Detail & Related papers (2024-06-28T08:28:38Z) - EDA Corpus: A Large Language Model Dataset for Enhanced Interaction with OpenROAD [0.2581187101462483]
We present an open-source dataset tailored for OpenROAD, a widely adopted open-source EDA toolchain.
The dataset features over 1000 data points and is structured in two formats: (i) a pairwise set comprised of question prompts with prose answers, and (ii) a pairwise set comprised of code prompts and their corresponding OpenROAD scripts.
arXiv Detail & Related papers (2024-05-04T21:29:37Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z) - ChatEDA: A Large Language Model Powered Autonomous Agent for EDA [6.858976599086164]
This research paper introduces ChatEDA, an autonomous agent for EDA empowered by an LLM, AutoMage, and EDA tools serving as executors.
ChatEDA streamlines the design flow from the Register-Transfer Level (RTL) to the Graphic Data System Version II (GDSII) by effectively managing task decomposition, script generation, and task execution.
arXiv Detail & Related papers (2023-08-20T08:32:13Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
Human Intelligence (HI) excels at combining basic skills to solve complex tasks.
This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents.
We introduce OpenAGI, an open-source platform designed for solving multi-step, real-world tasks.
arXiv Detail & Related papers (2023-04-10T03:55:35Z) - ART: Automatic multi-step reasoning and tool-use for large language
models [105.57550426609396]
Large language models (LLMs) can perform complex reasoning in few- and zero-shot settings.
Each reasoning step can rely on external tools to support computation beyond the core LLM capabilities.
We introduce Automatic Reasoning and Tool-use (ART), a framework that uses frozen LLMs to automatically generate intermediate reasoning steps as a program.
arXiv Detail & Related papers (2023-03-16T01:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.