Empowering Domain-Specific Language Models with Graph-Oriented Databases: A Paradigm Shift in Performance and Model Maintenance
- URL: http://arxiv.org/abs/2410.03867v1
- Date: Fri, 4 Oct 2024 19:02:09 GMT
- Title: Empowering Domain-Specific Language Models with Graph-Oriented Databases: A Paradigm Shift in Performance and Model Maintenance
- Authors: Ricardo Di Pasquale, Soledad Represa,
- Abstract summary: Our work is driven by the need to manage and process large volumes of short text documents inherent in specific application domains.
By leveraging domain-specific knowledge and expertise, our approach aims to shape factual data within these domains.
Our work underscores the transformative potential of the partnership of domain-specific language models and graph-oriented databases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In an era dominated by data, the management and utilization of domain-specific language have emerged as critical challenges in various application domains, particularly those with industry-specific requirements. Our work is driven by the need to effectively manage and process large volumes of short text documents inherent in specific application domains. By leveraging domain-specific knowledge and expertise, our approach aims to shape factual data within these domains, thereby facilitating enhanced utilization and understanding by end-users. Central to our methodology is the integration of domain-specific language models with graph-oriented databases, facilitating seamless processing, analysis, and utilization of textual data within targeted domains. Our work underscores the transformative potential of the partnership of domain-specific language models and graph-oriented databases. This cooperation aims to assist researchers and engineers in metric usage, mitigation of latency issues, boosting explainability, enhancing debug and improving overall model performance. Moving forward, we envision our work as a guide AI engineers, providing valuable insights for the implementation of domain-specific language models in conjunction with graph-oriented databases, and additionally provide valuable experience in full-life cycle maintenance of this kind of products.
Related papers
- Prompting Encoder Models for Zero-Shot Classification: A Cross-Domain Study in Italian [75.94354349994576]
This paper explores the feasibility of employing smaller, domain-specific encoder LMs alongside prompting techniques to enhance performance in specialized contexts.
Our study concentrates on the Italian bureaucratic and legal language, experimenting with both general-purpose and further pre-trained encoder-only models.
The results indicate that while further pre-trained models may show diminished robustness in general knowledge, they exhibit superior adaptability for domain-specific tasks, even in a zero-shot setting.
arXiv Detail & Related papers (2024-07-30T08:50:16Z) - A Unified Data Augmentation Framework for Low-Resource Multi-Domain Dialogue Generation [52.0964459842176]
Current state-of-the-art dialogue systems heavily rely on extensive training datasets.
We propose a novel data textbfAugmentation framework for textbfMulti-textbfDomain textbfDialogue textbfGeneration, referred to as textbfAMD$2$G.
The AMD$2$G framework consists of a data augmentation process and a two-stage training approach: domain-agnostic training and domain adaptation training.
arXiv Detail & Related papers (2024-06-14T09:52:27Z) - Boosting Large Language Models with Continual Learning for Aspect-based Sentiment Analysis [33.86086075084374]
Aspect-based sentiment analysis (ABSA) is an important subtask of sentiment analysis.
We propose a Large Language Model-based Continual Learning (textttLLM-CL) model for ABSA.
arXiv Detail & Related papers (2024-05-09T02:00:07Z) - GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding [39.67113788660731]
We introduce a framework for developing Graph-aligned LAnguage Models (GLaM)
We demonstrate that grounding the models in specific graph-based knowledge expands the models' capacity for structure-based reasoning.
arXiv Detail & Related papers (2024-02-09T19:53:29Z) - Query of CC: Unearthing Large Scale Domain-Specific Knowledge from
Public Corpora [104.16648246740543]
We propose an efficient data collection method based on large language models.
The method bootstraps seed information through a large language model and retrieves related data from public corpora.
It not only collects knowledge-related data for specific domains but unearths the data with potential reasoning procedures.
arXiv Detail & Related papers (2024-01-26T03:38:23Z) - Explore-Instruct: Enhancing Domain-Specific Instruction Coverage through
Active Exploration [64.58185031596169]
Explore-Instruct is a novel approach to enhance the data coverage to be used in domain-specific instruction-tuning.
Our data-centric analysis validates the effectiveness of this proposed approach in improving domain-specific instruction coverage.
Our findings offer a promising opportunity to improve instruction coverage, especially in domain-specific contexts.
arXiv Detail & Related papers (2023-10-13T15:03:15Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP)
They provide a highly useful, task-agnostic foundation for a wide range of applications.
However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles.
arXiv Detail & Related papers (2023-05-30T03:00:30Z) - A Unified Knowledge Graph Augmentation Service for Boosting
Domain-specific NLP Tasks [10.28161912127425]
We propose KnowledgeDA, a unified domain language model development service to enhance the task-specific training procedure with domain knowledge graphs.
We implement a prototype of KnowledgeDA to learn language models for two domains, healthcare and software development.
arXiv Detail & Related papers (2022-12-10T09:18:43Z) - Detecting ESG topics using domain-specific language models and data
augmentation approaches [3.3332986505989446]
Natural language processing tasks in the financial domain remain challenging due to paucity of appropriately labelled data.
Here, we investigate two approaches that may help to mitigate these issues.
Firstly, we experiment with further language model pre-training using large amounts of in-domain data from business and financial news.
We then apply augmentation approaches to increase the size of our dataset for model fine-tuning.
arXiv Detail & Related papers (2020-10-16T11:20:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.