論文の概要: Large Language Models can Achieve Social Balance
- arxiv url: http://arxiv.org/abs/2410.04054v1
- Date: Sat, 5 Oct 2024 06:23:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 14:30:41.711189
- Title: Large Language Models can Achieve Social Balance
- Title(参考訳): 大規模言語モデルは社会的バランスを達成できる
- Authors: Pedro Cisneros-Velarde,
- Abstract要約: 社会バランスとは、社会学における概念であり、もし人口の3人1人1人が、肯定的または否定的な相互作用の特定の構造を達成するならば、全人口は、肯定的な相互作用の1つの派閥に終わるか、2つ以上の敵対的な派閥に分けられる、という概念である。
本稿では,対話型大規模言語モデル(LLM)の一群について考察し,連続的な対話の後,どのように社会的バランスを達成できるかを考察する。
- 参考スコア(独自算出の注目度): 2.8282906214258805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social balance is a concept in sociology which states that if every three individuals in a population achieve certain structures of positive or negative interactions, then the whole population ends up in one faction of positive interactions or divided between two or more antagonistic factions. In this paper, we consider a group of interacting large language models (LLMs) and study how, after continuous interactions, they can achieve social balance. Across three different LLM models, we found that social balance depends on (i) whether interactions are updated based on "relationships", "appraisals", or "opinions"; (ii) whether agents update their interactions based on homophily or influence from their peers; and (iii) the number of simultaneous interactions the LLMs consider. When social balance is achieved, its particular structure of positive or negative interactions depends on these three conditions and are different across LLM models and sizes. The stability of interactions and the justification for their update also vary across models. Thus, social balance is driven by the pre-training and alignment particular to each LLM model.
- Abstract(参考訳): 社会均衡は社会学における概念であり、もし人口の3人1人1人1人が、肯定的または否定的な相互作用の特定の構造を達成すれば、全人口は肯定的な相互作用の1つの派閥に終わるか、2つ以上の敵対的な派閥に分かれることになる。
本稿では,対話型大規模言語モデル(LLM)の一群について考察し,連続的な対話の後,どのように社会的バランスを達成できるかを考察する。
3つの異なるLLMモデルにおいて、社会的バランスは依存していることがわかった。
(i)「関係性」「評価」又は「意見」に基づいて交流が更新されるか否か
2 エージェントが、同調的又は同調的影響に基づいて相互作用を更新するか否か
3) LLM が考慮する同時相互作用の数。
社会的バランスが達成されると、正または負の相互作用の特定の構造はこれら3つの条件に依存し、LLMモデルとサイズによって異なる。
インタラクションの安定性とアップデートの正当化も、モデルによって異なる。
従って、社会バランスは、それぞれのLLMモデルに特有の事前学習およびアライメントによって駆動される。
関連論文リスト
- The Dynamics of Social Conventions in LLM populations: Spontaneous Emergence, Collective Biases and Tipping Points [0.0]
シミュレーション対話を用いたLarge Language Model (LLM) エージェントの集団内におけるコンベンションのダイナミクスについて検討する。
グローバルに受け入れられる社会慣行は,LLM間の局所的な相互作用から自然に生じうることを示す。
献身的なLLMのマイノリティグループは、新しい社会慣習を確立することで社会変革を促進することができる。
論文 参考訳(メタデータ) (2024-10-11T16:16:38Z) - SocialGaze: Improving the Integration of Human Social Norms in Large Language Models [28.88929472131529]
社会的受容を判断する作業を紹介する。
社会的受容は、社会的状況における人々の行動の受容性を判断し、合理化するモデルを必要とする。
大規模言語モデルによる社会的受容に対する理解は、しばしば人間の合意と不一致である。
論文 参考訳(メタデータ) (2024-10-11T10:35:58Z) - Breaking Bias, Building Bridges: Evaluation and Mitigation of Social Biases in LLMs via Contact Hypothesis [23.329280888159744]
大規模言語モデル(LLM)は、訓練データに偏見を反映し、社会的ステレオタイプや不平等を補強する社会バイアスを持続させる。
本稿では,これらのモデルにプロンプトに対する非バイアス応答を付与する独自のデバイアス処理手法であるSocial Contact Debiasing(SCD)を提案する。
我々の研究は、LLM応答が接触探究の際の社会的バイアスを示すことを示したが、より重要なことは、これらのバイアスは、SCD戦略に従ってLLaMA 2を指導する1つの時代において、最大40%減少させることができることである。
論文 参考訳(メタデータ) (2024-07-02T07:58:46Z) - SocialBench: Sociality Evaluation of Role-Playing Conversational Agents [85.6641890712617]
大規模言語モデル(LLM)は、様々なAI対話エージェントの開発を進めてきた。
SocialBenchは、ロールプレイングの会話エージェントの社会的性を個人レベルとグループレベルで評価するために設計された最初のベンチマークである。
個人レベルで優れたエージェントは,集団レベルでの熟練度を示唆しない。
論文 参考訳(メタデータ) (2024-03-20T15:38:36Z) - Do LLM Agents Exhibit Social Behavior? [5.094340963261968]
State-Understanding-Value-Action (SUVA) は、社会的文脈における応答を体系的に分析するフレームワークである。
最終決定とそれにつながる反応生成プロセスの両方を通じて社会的行動を評価する。
発話に基づく推論がLLMの最終動作を確実に予測できることを実証する。
論文 参考訳(メタデータ) (2023-12-23T08:46:53Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
人工エージェントと人間との複雑な社会的相互作用をシミュレートするオープンエンド環境であるSOTOPIAを提案する。
エージェントは、複雑な社会的目標を達成するために協調し、協力し、交換し、互いに競い合う。
GPT-4は,人間よりも目標達成率が著しく低く,社会的常識的推論や戦略的コミュニケーション能力の発揮に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-10-18T02:27:01Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
AIシステムにおける社会的アライメントは、確立された社会的価値に応じてこれらのモデルが振舞うことを保証することを目的としている。
現在の言語モデル(LM)は、トレーニングコーパスを独立して厳格に複製するように訓練されている。
本研究は,シミュレートされた社会的相互作用からLMを学習することのできる,新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:17:36Z) - Flexible social inference facilitates targeted social learning when
rewards are not observable [58.762004496858836]
グループは、個人が他人の成功から学べるときにより効果的にコーディネートする。
社会的推論能力は、このギャップを埋める助けとなり、個人が他人の基本的な知識に対する信念を更新し、観察可能な行動軌跡から成功することを示唆する。
論文 参考訳(メタデータ) (2022-12-01T21:04:03Z) - SSAGCN: Social Soft Attention Graph Convolution Network for Pedestrian
Trajectory Prediction [59.064925464991056]
ソーシャルソフトアテンショングラフ畳み込みネットワーク(SSAGCN)という新しい予測モデルを提案する。
SSAGCNは、歩行者間の社会的相互作用と歩行者と環境間のシーンインタラクションを同時に扱うことを目的としている。
公開データセットの実験は、SAGCNの有効性を証明し、最先端の結果を得た。
論文 参考訳(メタデータ) (2021-12-05T01:49:18Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
私たちは、物理的に根拠のある抽象的なソーシャルイベント、フェーズのデータセットを作成します。
フェーズは人間の実験によって検証され、人間は社会出来事において豊かな相互作用を知覚する。
ベースラインモデルとして,最新のフィードフォワードニューラルネットワークよりも優れたベイズ逆計画手法SIMPLEを導入する。
論文 参考訳(メタデータ) (2021-03-02T18:44:57Z) - Interactions in information spread: quantification and interpretation
using stochastic block models [3.5450828190071655]
ソーシャルネットワークでは、ユーザーの行動は、対話する人々、フィード内のニュース、トレンドトピックから生じる。
本稿では、エンティティ間のインタラクションの役割を調査する新しいモデル、Interactive Mixed Membership Block Model (IMMSBM)を提案する。
推論タスクでは、それらを考慮すれば、結果の確率の最大150%の非相互作用モデルに対する平均的な相対的な変化につながる。
論文 参考訳(メタデータ) (2020-04-09T14:22:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。