Unique ID based Trust Scheme for Improved IoV Wireless Sensor Network Security Against Power Controlled Sybil Attacks
- URL: http://arxiv.org/abs/2410.04063v1
- Date: Sat, 5 Oct 2024 07:20:55 GMT
- Title: Unique ID based Trust Scheme for Improved IoV Wireless Sensor Network Security Against Power Controlled Sybil Attacks
- Authors: Jae-Dong Kim, Dabin Kim, Minseok Ko, Jong-Moon Chung,
- Abstract summary: Wireless sensor networks (WSNs) are widely used in vehicular networks to support Vehicle-to-Everything (V2X) communications.
WSNs face security challenges due to their distributed nature and resource limited modules.
This paper proposes a unique identification based trust path routing scheme (UITrust) to avoid Sybil attacks.
- Score: 1.906179410714637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wireless sensor networks (WSN) are widely used in vehicular networks to support Vehicle-to-Everything (V2X) communications. Wireless sensors in vehicular networks support sensing and monitoring of various environmental factors and vehicle movement, which can help to enhance traffic management, road safety, and transportation efficiency. However, WSNs face security challenges due to their distributed nature and resource limited modules. In Sybil attacks, attackers create multiple fake identities to disrupt network operations (e.g., denial-of-service (DoS)), which is one of the major security concerns in WSNs. Defensive techniques have been proposed, which recently include a received signal strength indicator (RSSI) profiling scheme that improves the performance and is not affected by internal forgeable information. However, even this new RSSI based robust detection scheme was found to be vulnerable when Sybil attackers are mobile or intentionally manipulate their radio transmission power in addition to their device address. In this paper, a unique identification based trust path routing scheme (UITrust) is proposed, which uses the device's physically invariable unique identifiers and routing path trust level estimations to avoid power-controlled Sybil attacks, where the simulation results show the proposed scheme can provide a significant improvement compared to existing schemes.
Related papers
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Securing Distributed Network Digital Twin Systems Against Model Poisoning Attacks [19.697853431302768]
Digital twins (DTs) embody real-time monitoring, predictive, and enhanced decision-making capabilities.
This study investigates the security challenges in distributed network DT systems, which potentially undermine the reliability of subsequent network applications.
arXiv Detail & Related papers (2024-07-02T03:32:09Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
Negligence on the security of infotainment data communication in IoV networks can unintentionally open an easy access point for social engineering attacks.
In particular, we first classify data communication in the IoV network, examine the security focus of each data communication, and then develop a differentiated security architecture to provide security protection on a file-to-file basis.
arXiv Detail & Related papers (2024-03-29T12:01:31Z) - SISSA: Real-time Monitoring of Hardware Functional Safety and
Cybersecurity with In-vehicle SOME/IP Ethernet Traffic [49.549771439609046]
We propose SISSA, a SOME/IP communication traffic-based approach for modeling and analyzing in-vehicle functional safety and cyber security.
Specifically, SISSA models hardware failures with the Weibull distribution and addresses five potential attacks on SOME/IP communication.
Extensive experimental results show the effectiveness and efficiency of SISSA.
arXiv Detail & Related papers (2024-02-21T03:31:40Z) - Domain-Agnostic Hardware Fingerprinting-Based Device Identifier for Zero-Trust IoT Security [7.8344795632171325]
Next-generation networks aim for comprehensive connectivity, interconnecting humans, machines, devices, and systems seamlessly.
To address this challenge, the Zero Trust (ZT) paradigm emerges as a key method for safeguarding network integrity and data confidentiality.
This work introduces EPS-CNN, a novel deep-learning-based wireless device identification framework.
arXiv Detail & Related papers (2024-02-08T00:23:42Z) - Cyber-Twin: Digital Twin-boosted Autonomous Attack Detection for Vehicular Ad-Hoc Networks [8.07947129445779]
The rapid evolution of Vehicular Ad-hoc NETworks (VANETs) has ushered in a transformative era for intelligent transportation systems (ITS)
VANETs are increasingly susceptible to cyberattacks, such as jamming and distributed denial of service (DDoS) attacks.
Existing methods face difficulties in detecting dynamic attacks and integrating digital twin technology and artificial intelligence (AI) models to enhance VANET cybersecurity.
This study proposes a novel framework that combines digital twin technology with AI to enhance the security of RSUs in VANETs.
arXiv Detail & Related papers (2024-01-25T08:05:41Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - X-CANIDS: Signal-Aware Explainable Intrusion Detection System for Controller Area Network-Based In-Vehicle Network [6.68111081144141]
X-CANIDS dissects the payloads in CAN messages into human-understandable signals using a CAN database.
X-CANIDS can detect zero-day attacks because it does not require any labeled dataset in the training phase.
arXiv Detail & Related papers (2023-03-22T03:11:02Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z) - Cybersecurity Threats in Connected and Automated Vehicles based
Federated Learning Systems [7.979659145328856]
Federated learning (FL) aims at training an algorithm across decentralized entities holding their local data private.
Most cyber defense techniques depend on highly reliable and connected networks.
This paper explores falsified information attacks, which target the FL process that is ongoing at the RSU.
arXiv Detail & Related papers (2021-02-26T01:39:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.