Cyber-Twin: Digital Twin-boosted Autonomous Attack Detection for Vehicular Ad-Hoc Networks
- URL: http://arxiv.org/abs/2401.14005v4
- Date: Fri, 15 Mar 2024 11:42:22 GMT
- Title: Cyber-Twin: Digital Twin-boosted Autonomous Attack Detection for Vehicular Ad-Hoc Networks
- Authors: Yagmur Yigit, Ioannis Panitsas, Leandros Maglaras, Leandros Tassiulas, Berk Canberk,
- Abstract summary: The rapid evolution of Vehicular Ad-hoc NETworks (VANETs) has ushered in a transformative era for intelligent transportation systems (ITS)
VANETs are increasingly susceptible to cyberattacks, such as jamming and distributed denial of service (DDoS) attacks.
Existing methods face difficulties in detecting dynamic attacks and integrating digital twin technology and artificial intelligence (AI) models to enhance VANET cybersecurity.
This study proposes a novel framework that combines digital twin technology with AI to enhance the security of RSUs in VANETs.
- Score: 8.07947129445779
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid evolution of Vehicular Ad-hoc NETworks (VANETs) has ushered in a transformative era for intelligent transportation systems (ITS), significantly enhancing road safety and vehicular communication. However, the intricate and dynamic nature of VANETs presents formidable challenges, particularly in vehicle-to-infrastructure (V2I) communications. Roadside Units (RSUs), integral components of VANETs, are increasingly susceptible to cyberattacks, such as jamming and distributed denial of service (DDoS) attacks. These vulnerabilities pose grave risks to road safety, potentially leading to traffic congestion and vehicle malfunctions. Existing methods face difficulties in detecting dynamic attacks and integrating digital twin technology and artificial intelligence (AI) models to enhance VANET cybersecurity. Our study proposes a novel framework that combines digital twin technology with AI to enhance the security of RSUs in VANETs and address this gap. This framework enables real-time monitoring and efficient threat detection while also improving computational efficiency and reducing data transmission delay for increased energy efficiency and hardware durability. Our framework outperforms existing solutions in resource management and attack detection. It reduces RSU load and data transmission delay while achieving an optimal balance between resource consumption and high attack detection effectiveness. This highlights our commitment to secure and sustainable vehicular communication systems for smart cities.
Related papers
- Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AI is a rapidly advancing field that bridges the gap between cyberspace and physical space.
In VEANET, embodied AI twins act as in-vehicle AI assistants to perform diverse tasks supporting autonomous driving.
arXiv Detail & Related papers (2024-10-02T02:20:42Z) - AI-Driven Intrusion Detection Systems (IDS) on the ROAD Dataset: A Comparative Analysis for Automotive Controller Area Network (CAN) [4.081467217340597]
The Controller Area Network (CAN) bus is a central system for managing in-vehicle communication between the electronic control units (ECUs)
CAN protocol poses security challenges due to inherent vulnerabilities, lacking encryption and authentication, which, combined with an expanding attack surface, necessitates robust security measures.
This paper considers the latest ROAD dataset, containing stealthy and sophisticated injections.
arXiv Detail & Related papers (2024-08-30T12:26:23Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Reinforcement Learning for Joint V2I Network Selection and Autonomous
Driving Policies [14.518558523319518]
Vehicle-to-Infrastructure (V2I) communication is becoming critical for the enhanced reliability of autonomous vehicles (AVs)
It is critical to simultaneously optimize the AVs' network selection and driving policies in order to minimize road collisions.
We develop a reinforcement learning framework to characterize efficient network selection and autonomous driving policies.
arXiv Detail & Related papers (2022-08-03T04:33:02Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - A Transfer Learning and Optimized CNN Based Intrusion Detection System
for Internet of Vehicles [10.350337750192997]
In this paper, a transfer learning and ensemble learning-based IDS is proposed for Internet of Vehicles (IoV) systems.
The proposed IDS has demonstrated over 99.25% detection rates and F1-scores on two public benchmark IoV security datasets.
This shows the effectiveness of the proposed IDS for cyber-attack detection in both intra-vehicle and external vehicular networks.
arXiv Detail & Related papers (2022-01-27T21:24:09Z) - Smart and Secure CAV Networks Empowered by AI-Enabled Blockchain: Next
Frontier for Intelligent Safe-Driving Assessment [17.926728975133113]
Securing a safe-driving circumstance for connected and autonomous vehicles (CAVs) continues to be a widespread concern.
We propose a novel framework of algorithm-enabled intElligent Safe-driving assessmenT (BEST) to offer a smart and reliable approach.
arXiv Detail & Related papers (2021-04-09T19:08:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.