論文の概要: A Learning Rate Path Switching Training Paradigm for Version Updates of Large Language Models
- arxiv url: http://arxiv.org/abs/2410.04103v1
- Date: Sat, 5 Oct 2024 10:15:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 14:11:12.975954
- Title: A Learning Rate Path Switching Training Paradigm for Version Updates of Large Language Models
- Title(参考訳): 大規模言語モデルのバージョン更新のための学習速度経路切替学習パラダイム
- Authors: Zhihao Wang, Shiyu Liu, Jianheng Huang, Zheng Wang, Yixuan Liao, Xiaoxin Chen, Junfeng Yao, Jinsong Su,
- Abstract要約: LLM(Large Language Models)のバージョン更新のためのトレーニングパラダイムには、スクラッチ(PTFS)からの事前トレーニング(Continuousal Pre-training)やCPT(Continuous Pre-training)などがある。
予備実験では、PTFSはトレーニング前のパフォーマンスが向上し、CPTはトレーニングコストが低下することを示した。
我々のパラダイムは,LLMを最大学習率で事前学習する1つの主要なパスと,新たに追加されたトレーニングデータでLLMを更新する複数の分岐パスから構成される。
- 参考スコア(独自算出の注目度): 35.44133682914159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the continuous emergence of new data, version updates have become an indispensable requirement for Large Language Models (LLMs). The training paradigms for version updates of LLMs include pre-training from scratch (PTFS) and continual pre-training (CPT). Preliminary experiments demonstrate that PTFS achieves better pre-training performance, while CPT has lower training cost. Moreover, their performance and training cost gaps widen progressively with version updates. To investigate the underlying reasons for this phenomenon, we analyze the effect of learning rate adjustments during the two stages of CPT: preparing an initialization checkpoint and continual pre-training based on this checkpoint. We find that a large learning rate in the first stage and a complete learning rate decay process in the second stage are crucial for version updates of LLMs. Hence, we propose a learning rate path switching training paradigm. Our paradigm comprises one main path, where we pre-train a LLM with the maximal learning rate, and multiple branching paths, each of which corresponds to an update of the LLM with newly-added training data. Extensive experiments demonstrate the effectiveness and generalization of our paradigm. Particularly, when training four versions of LLMs, our paradigm reduces the total training cost to 58% compared to PTFS, while maintaining comparable pre-training performance.
- Abstract(参考訳): 新しいデータの継続的な出現により、バージョン更新は、LLM(Large Language Models)にとって必須の要件となっている。
LLMのバージョン更新のためのトレーニングパラダイムには、スクラッチからの事前トレーニング(PTFS)と継続事前トレーニング(CPT)がある。
予備実験では、PTFSはトレーニング前のパフォーマンスが向上し、CPTはトレーニングコストが低下することを示した。
さらに、パフォーマンスとトレーニングコストのギャップは、バージョンアップデートによって徐々に拡大しています。
この現象の根本原因を明らかにするため,CPTの2段階における学習率調整の効果を解析し,初期化チェックポイントの作成と,このチェックポイントに基づく継続事前学習を行う。
LLMのバージョン更新には,第1段階での大きな学習率と第2段階での学習率の崩壊プロセスが不可欠であることがわかった。
そこで本研究では,学習速度パス切替訓練パラダイムを提案する。
我々のパラダイムは,LLMを最大学習率で事前学習する1つの主要なパスと,新たに追加されたトレーニングデータでLLMを更新する複数の分岐パスから構成される。
大規模な実験は、我々のパラダイムの有効性と一般化を実証する。
特に,LLMの4バージョンをトレーニングする場合,本パラダイムはPTFSと比較してトレーニングコストを58%削減すると同時に,事前トレーニング性能も同等に維持する。
関連論文リスト
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - Balancing Continuous Pre-Training and Instruction Fine-Tuning: Optimizing Instruction-Following in LLMs [4.096028601599825]
パブリック使用のための大規模言語モデル(LLM)は、最新のデータと最新の状態を維持するために、継続的な事前トレーニングを必要とする。
本研究では、命令データや微調整を必要とせず、最新の知識と命令追従能力を得るための最も計算効率の良い戦略を見つけることを目的とする。
論文 参考訳(メタデータ) (2024-10-14T17:20:30Z) - Deciphering Cross-Modal Alignment in Large Vision-Language Models with Modality Integration Rate [118.37653302885607]
本稿では,LVLM(Large Vision Language Models)のマルチモーダル事前学習品質を示すために,MIR(Modality Integration Rate)を提案する。
MIRは、トレーニングデータ選択、トレーニング戦略スケジュール、モデルアーキテクチャ設計に重点を置いて、トレーニング前の結果を改善する。
論文 参考訳(メタデータ) (2024-10-09T17:59:04Z) - Efficient Continual Pre-training by Mitigating the Stability Gap [68.49269649759005]
本研究では,Large Language Models (LLM) の継続事前学習における挙動について検討する。
固定された計算予算内でのLLM性能を向上させるための3つの効果的な戦略を提案する。
当社の戦略は,OpenLlama-3Bモデルの平均医療タスク性能を36.2%から40.7%に改善し,当初のトレーニング予算の40%に過ぎなかった。
論文 参考訳(メタデータ) (2024-06-21T02:28:37Z) - InternLM2 Technical Report [159.70692271378581]
本稿では,オープンソースのLarge Language Models (LLM) であるInternLM2を紹介する。
InternLM2の事前トレーニングプロセスは細部まで詳細に書かれており、多様なデータ型の準備が強調されている。
InternLM2は、4kトークンでトレーニングされた長期的依存関係を効率的にキャプチャし、事前トレーニングおよび微調整の段階で32kトークンに進む。
論文 参考訳(メタデータ) (2024-03-26T00:53:24Z) - Boosting Meta-Training with Base Class Information for Few-Shot Learning [35.144099160883606]
2つの代替ループからなるエンドツーエンドのトレーニングパラダイムを提案する。
外部ループでは,最終線形層のみを更新しながら,トレーニングセット全体のクロスエントロピー損失を算出する。
このトレーニングパラダイムは、迅速に収束するだけでなく、既存のベースラインよりも優れており、トレーニングセット全体からの情報とメタラーニングトレーニングパラダイムが相互に強化できることを示している。
論文 参考訳(メタデータ) (2024-03-06T05:13:23Z) - Continual Learning for Large Language Models: A Survey [95.79977915131145]
大規模言語モデル(LLM)は、大規模なトレーニングコストが高いため、頻繁な再トレーニングには適さない。
本稿では,LLMの連続学習に関する最近の研究について述べる。
論文 参考訳(メタデータ) (2024-02-02T12:34:09Z) - FairSISA: Ensemble Post-Processing to Improve Fairness of Unlearning in
LLMs [6.689848416609951]
大規模言語モデル(LLM)における未学習と公平性の相互作用について検討する。
我々は、SISAとして知られる人気のある非学習フレームワークに焦点を当て、非結合シャードで訓練されたモデルのアンサンブルを作成する。
SISAによるアンサンブルモデルに対する後処理バイアス軽減手法を提案する。
論文 参考訳(メタデータ) (2023-12-12T16:44:47Z) - Flipped Classroom: Effective Teaching for Time Series Forecasting [0.0]
LSTMとGRUに基づくシーケンス・ツー・シーケンス・モデルは時系列データの予測において最も一般的な選択肢である。
この文脈における2つの一般的なトレーニング戦略は、教師強制(TF)とフリーランニング(FR)である。
いくつかの新しいカリキュラムを提案し、その性能を2つの実験セットで体系的に評価する。
論文 参考訳(メタデータ) (2022-10-17T11:53:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。