論文の概要: Rethinking Fair Representation Learning for Performance-Sensitive Tasks
- arxiv url: http://arxiv.org/abs/2410.04120v1
- Date: Sat, 5 Oct 2024 11:01:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 14:01:04.088741
- Title: Rethinking Fair Representation Learning for Performance-Sensitive Tasks
- Title(参考訳): パフォーマンスに敏感なタスクに対する公正表現学習の再考
- Authors: Charles Jones, Fabio de Sousa Ribeiro, Mélanie Roschewitz, Daniel C. Castro, Ben Glocker,
- Abstract要約: 因果推論を用いて、データセットバイアスの異なるソースを定義し、定式化する。
我々は、分布シフト下での公正表現学習の性能を調べるために、様々な医学的モダリティにまたがる実験を行う。
- 参考スコア(独自算出の注目度): 19.40265690963578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the prominent class of fair representation learning methods for bias mitigation. Using causal reasoning to define and formalise different sources of dataset bias, we reveal important implicit assumptions inherent to these methods. We prove fundamental limitations on fair representation learning when evaluation data is drawn from the same distribution as training data and run experiments across a range of medical modalities to examine the performance of fair representation learning under distribution shifts. Our results explain apparent contradictions in the existing literature and reveal how rarely considered causal and statistical aspects of the underlying data affect the validity of fair representation learning. We raise doubts about current evaluation practices and the applicability of fair representation learning methods in performance-sensitive settings. We argue that fine-grained analysis of dataset biases should play a key role in the field moving forward.
- Abstract(参考訳): 偏見緩和のための公正表現学習手法の卓越したクラスについて検討する。
因果推論を用いて、データセットバイアスの異なるソースを定義し、定式化することにより、これらの手法に固有の重要な暗黙の仮定を明らかにする。
評価データがトレーニングデータと同じ分布から引き出された場合の公正表現学習の基本的限界を証明し, 公平表現学習の性能を分布シフト下で検証する。
本研究は,既存の文献の矛盾を明らかに説明し,基礎となるデータの因果的・統計的側面が公正表現学習の妥当性にどの程度影響するかを明らかにする。
我々は,現在の評価手法と公正表現学習手法の適用性に疑問を呈する。
我々は、データセットバイアスのきめ細かい分析が、前進する分野において重要な役割を果たすべきだと論じている。
関連論文リスト
- Targeted Learning for Data Fairness [52.59573714151884]
データ生成プロセス自体の公平性を評価することにより、公平性推論を拡張する。
我々は、人口統計学的平等、平等機会、条件付き相互情報から推定する。
提案手法を検証するため,いくつかのシミュレーションを行い,実データに適用する。
論文 参考訳(メタデータ) (2025-02-06T18:51:28Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - Disentangled Representation with Causal Constraints for Counterfactual
Fairness [25.114619307838602]
この研究は、構造化された表現を使用することで、下流の予測モデルが反現実的公正を達成することを理論的に証明している。
本稿では,ドメイン知識に関する構造化表現を得るために,CF-VAE(Counterfactal Fairness Variational AutoEncoder)を提案する。
実験結果から,提案手法はベンチマークフェアネス法よりも高精度で精度が高いことがわかった。
論文 参考訳(メタデータ) (2022-08-19T04:47:58Z) - Conditional Supervised Contrastive Learning for Fair Text Classification [59.813422435604025]
対照的な学習を通してテキスト分類のための等化オッズとして知られる公平性の概念を満たす学習公正表現について研究する。
具体的には、まず、公正性制約のある学習表現と条件付き教師付きコントラスト目的との間の関係を理論的に分析する。
論文 参考訳(メタデータ) (2022-05-23T17:38:30Z) - On Learning and Testing of Counterfactual Fairness through Data
Preprocessing [27.674565351048077]
機械学習は実生活における意思決定においてますます重要になっているが、人々は不適切な使用によってもたらされる倫理的問題を懸念している。
最近の研究は、機械学習の公正性に関する議論を因果的枠組みに持ち込み、対実的公正性の概念を精査している。
偏りのあるトレーニングデータから対実的に公正な決定を学習するために,dAta前処理(FLAP)アルゴリズムを用いてフェアラーニングを開発する。
論文 参考訳(メタデータ) (2022-02-25T00:21:46Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Fair Representation Learning using Interpolation Enabled Disentanglement [9.043741281011304]
a) 下流タスクに対する学習された表現の有用性を確保しつつ、公平な不整合表現を同時に学べるか、(b) 提案手法が公正かつ正確であるかどうかに関する理論的知見を提供する。
前者に対応するために,補間可能外乱を用いた公正表現学習法FRIEDを提案する。
論文 参考訳(メタデータ) (2021-07-31T17:32:12Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
データ管理研究は、データとアルゴリズムの公平性に関連するトピックに対する存在感と関心が高まっている。
我々は,その正しさ,公平性,効率性,スケーラビリティ,安定性よりも,13の公正な分類アプローチと追加の変種を幅広く分析している。
我々の分析は、異なるメトリクスとハイレベルなアプローチ特性がパフォーマンスの異なる側面に与える影響に関する新しい洞察を強調します。
論文 参考訳(メタデータ) (2021-01-18T22:55:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。