WAVE-UNET: Wavelength based Image Reconstruction method using attention UNET for OCT images
- URL: http://arxiv.org/abs/2410.04123v1
- Date: Sat, 5 Oct 2024 11:16:10 GMT
- Title: WAVE-UNET: Wavelength based Image Reconstruction method using attention UNET for OCT images
- Authors: Maryam Viqar, Erdem Sahin, Violeta Madjarova, Elena Stoykova, Keehoon Hong,
- Abstract summary: We propose a systematic design methodology WAVE-UNET to reconstruct the high-quality OCT images directly from the lambda-space to reduce the complexity.
This framework uses modified UNET having attention gating and residual connections, with IDFT processed lambda-space fringes as the input.
The method consistently outperforms the traditional OCT system by generating good-quality B-scans with highly reduced time-complexity.
- Score: 1.0835264351334324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose to leverage a deep-learning (DL) based reconstruction framework for high quality Swept-Source Optical Coherence Tomography (SS-OCT) images, by incorporating wavelength ({\lambda}) space interferometric fringes. Generally, the SS-OCT captured fringe is linear in wavelength space and if Inverse Discrete Fourier Transform (IDFT) is applied to extract depth-resolved spectral information, the resultant images are blurred due to the broadened Point Spread Function (PSF). Thus, the recorded wavelength space fringe is to be scaled to uniform grid in wavenumber (k) space using k-linearization and calibration involving interpolations which may result in loss of information along with increased system complexity. Another challenge in OCT is the speckle noise, inherent in the low coherence interferometry-based systems. Hence, we propose a systematic design methodology WAVE-UNET to reconstruct the high-quality OCT images directly from the {\lambda}-space to reduce the complexity. The novel design paradigm surpasses the linearization procedures and uses DL to enhance the realism and quality of raw {\lambda}-space scans. This framework uses modified UNET having attention gating and residual connections, with IDFT processed {\lambda}-space fringes as the input. The method consistently outperforms the traditional OCT system by generating good-quality B-scans with highly reduced time-complexity.
Related papers
- UnWave-Net: Unrolled Wavelet Network for Compton Tomography Image Reconstruction [0.0]
Compton scatter tomography (CST) presents an interesting alternative to conventional CT.
Deep unrolling networks have demonstrated potential in CT image reconstruction.
UnWave-Net is a novel unrolled wavelet-based reconstruction network.
arXiv Detail & Related papers (2024-06-05T16:10:29Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
This paper aims to address a common challenge in deep learning-based image transformation methods, such as image enhancement and super-resolution.
We introduce a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain.
Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain.
arXiv Detail & Related papers (2024-02-28T09:27:41Z) - PRISTA-Net: Deep Iterative Shrinkage Thresholding Network for Coded
Diffraction Patterns Phase Retrieval [6.982256124089]
Phase retrieval is a challenge nonlinear inverse problem in computational imaging and image processing.
We have developed PRISTA-Net, a deep unfolding network based on the first-order iterative threshold threshold algorithm (ISTA)
All parameters in the proposed PRISTA-Net framework, including the nonlinear transformation, threshold, and step size, are learned-to-end instead of being set.
arXiv Detail & Related papers (2023-09-08T07:37:15Z) - Spatial-Frequency U-Net for Denoising Diffusion Probabilistic Models [89.76587063609806]
We study the denoising diffusion probabilistic model (DDPM) in wavelet space, instead of pixel space, for visual synthesis.
By explicitly modeling the wavelet signals, we find our model is able to generate images with higher quality on several datasets.
arXiv Detail & Related papers (2023-07-27T06:53:16Z) - Residual Degradation Learning Unfolding Framework with Mixing Priors
across Spectral and Spatial for Compressive Spectral Imaging [29.135848304404533]
coded aperture snapshot spectral imaging (CASSI) is proposed.
core problem of the CASSI system is to recover the reliable and fine underlying 3D spectral cube from the 2D measurement.
We propose a Residual Degradation Learning Unfolding Framework (RDLUF) which bridges the gap between the sensing matrix and the degradation process.
arXiv Detail & Related papers (2022-11-13T12:31:49Z) - FreqNet: A Frequency-domain Image Super-Resolution Network with Dicrete
Cosine Transform [16.439669339293747]
Single image super-resolution(SISR) is an ill-posed problem that aims to obtain high-resolution (HR) output from low-resolution (LR) input.
Despite the high peak signal-to-noise ratios(PSNR) results, it is difficult to determine whether the model correctly adds desired high-frequency details.
We propose FreqNet, an intuitive pipeline from the frequency domain perspective, to solve this problem.
arXiv Detail & Related papers (2021-11-21T11:49:12Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years.
We propose an asymmetric CNN (ACNet) comprising an asymmetric block (AB), a mem?ory enhancement block (MEB) and a high-frequency feature enhancement block (HFFEB) for image super-resolution.
Our ACNet can effectively address single image super-resolution (SISR), blind SISR and blind SISR of blind noise problems.
arXiv Detail & Related papers (2021-03-25T07:10:46Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
Cross-modality distribution of spatial and spectral information makes the problem challenging.
We propose a novel textitlightweight deep neural network-based framework, namely PZRes-Net.
Our framework learns a high resolution and textitzero-centric residual image, which contains high-frequency spatial details of the scene.
arXiv Detail & Related papers (2020-06-18T06:32:11Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.