Optimized Sampling for Non-Line-of-Sight Imaging Using Modified Fast Fourier Transforms
- URL: http://arxiv.org/abs/2501.05244v1
- Date: Thu, 09 Jan 2025 13:52:30 GMT
- Title: Optimized Sampling for Non-Line-of-Sight Imaging Using Modified Fast Fourier Transforms
- Authors: Talha Sultan, Alex Bocchieri, Chaoying Gu, Xiaochun Liu, Pavel Polynkin, Andreas Velten,
- Abstract summary: Non-line-of-Sight (NLOS) imaging systems collect light at a diffuse relay surface and input this measurement into computational algorithms that output a 3D reconstruction.
These algorithms utilize the Fast Fourier Transform (FFT) to accelerate the reconstruction process but require both input and output to be sampled spatially with uniform grids.
In this work, we demonstrate that existing NLOS imaging setups typically oversample the relay surface spatially, explaining why the measurement can be compressed without sacrificing reconstruction quality.
- Score: 6.866110149269
- License:
- Abstract: Non-line-of-Sight (NLOS) imaging systems collect light at a diffuse relay surface and input this measurement into computational algorithms that output a 3D volumetric reconstruction. These algorithms utilize the Fast Fourier Transform (FFT) to accelerate the reconstruction process but require both input and output to be sampled spatially with uniform grids. However, the geometry of NLOS imaging inherently results in non-uniform sampling on the relay surface when using multi-pixel detector arrays, even though such arrays significantly reduce acquisition times. Furthermore, using these arrays increases the data rate required for sensor readout, posing challenges for real-world deployment. In this work, we utilize the phasor field framework to demonstrate that existing NLOS imaging setups typically oversample the relay surface spatially, explaining why the measurement can be compressed without significantly sacrificing reconstruction quality. This enables us to utilize the Non-Uniform Fast Fourier Transform (NUFFT) to reconstruct from sparse measurements acquired from irregularly sampled relay surfaces of arbitrary shapes. Furthermore, we utilize the NUFFT to reconstruct at arbitrary locations in the hidden volume, ensuring flexible sampling schemes for both the input and output. Finally, we utilize the Scaled Fast Fourier Transform (SFFT) to reconstruct larger volumes without increasing the number of samples stored in memory. All algorithms introduced in this paper preserve the computational complexity of FFT-based methods, ensuring scalability for practical NLOS imaging applications.
Related papers
- Adaptive Random Fourier Features Training Stabilized By Resampling With Applications in Image Regression [0.8947831206263182]
We present an enhanced adaptive random Fourier features (ARFF) training algorithm for shallow neural networks.
This method uses a particle filter-type resampling technique to stabilize the training process and reduce the sensitivity to parameter choices.
arXiv Detail & Related papers (2024-10-08T22:08:03Z) - WAVE-UNET: Wavelength based Image Reconstruction method using attention UNET for OCT images [1.0835264351334324]
We propose a systematic design methodology WAVE-UNET to reconstruct the high-quality OCT images directly from the lambda-space to reduce the complexity.
This framework uses modified UNET having attention gating and residual connections, with IDFT processed lambda-space fringes as the input.
The method consistently outperforms the traditional OCT system by generating good-quality B-scans with highly reduced time-complexity.
arXiv Detail & Related papers (2024-10-05T11:16:10Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
This paper aims to address a common challenge in deep learning-based image transformation methods, such as image enhancement and super-resolution.
We introduce a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain.
Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain.
arXiv Detail & Related papers (2024-02-28T09:27:41Z) - SST-ReversibleNet: Reversible-prior-based Spectral-Spatial Transformer
for Efficient Hyperspectral Image Reconstruction [15.233185887461826]
A novel framework called the reversible-prior-based method is proposed.
ReversibleNet significantly outperforms state-of-the-art methods on simulated and real HSI datasets.
arXiv Detail & Related papers (2023-05-06T14:01:02Z) - A Deep Learning Approach for SAR Tomographic Imaging of Forested Areas [10.477070348391079]
We show that light-weight neural networks can be trained to perform the tomographic inversion with a single feed-forward pass.
We train our encoder-decoder network using simulated data and validate our technique on real L-band and P-band data.
arXiv Detail & Related papers (2023-01-20T14:34:03Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - DPFNet: A Dual-branch Dilated Network with Phase-aware Fourier
Convolution for Low-light Image Enhancement [1.2645663389012574]
Low-light image enhancement is a classical computer vision problem aiming to recover normal-exposure images from low-light images.
convolutional neural networks commonly used in this field are good at sampling low-frequency local structural features in the spatial domain.
We propose a novel module using the Fourier coefficients, which can recover high-quality texture details under the constraint of semantics in the frequency phase.
arXiv Detail & Related papers (2022-09-16T13:56:09Z) - PREF: Phasorial Embedding Fields for Compact Neural Representations [54.44527545923917]
We present a phasorial embedding field emphPREF as a compact representation to facilitate neural signal modeling and reconstruction tasks.
Our experiments show PREF-based neural signal processing technique is on par with the state-of-the-art in 2D image completion, 3D SDF surface regression, and 5D radiance field reconstruction.
arXiv Detail & Related papers (2022-05-26T17:43:03Z) - Adaptive Machine Learning for Time-Varying Systems: Low Dimensional
Latent Space Tuning [91.3755431537592]
We present a recently developed method of adaptive machine learning for time-varying systems.
Our approach is to map very high (N>100k) dimensional inputs into the low dimensional (N2) latent space at the output of the encoder section of an encoder-decoder CNN.
This method allows us to learn correlations within and to track their evolution in real time based on feedback without interrupts.
arXiv Detail & Related papers (2021-07-13T16:05:28Z) - Light Field Reconstruction Using Convolutional Network on EPI and
Extended Applications [78.63280020581662]
A novel convolutional neural network (CNN)-based framework is developed for light field reconstruction from a sparse set of views.
We demonstrate the high performance and robustness of the proposed framework compared with state-of-the-art algorithms.
arXiv Detail & Related papers (2021-03-24T08:16:32Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.