IV-Mixed Sampler: Leveraging Image Diffusion Models for Enhanced Video Synthesis
- URL: http://arxiv.org/abs/2410.04171v2
- Date: Tue, 8 Oct 2024 03:24:10 GMT
- Title: IV-Mixed Sampler: Leveraging Image Diffusion Models for Enhanced Video Synthesis
- Authors: Shitong Shao, Zikai Zhou, Lichen Bai, Haoyi Xiong, Zeke Xie,
- Abstract summary: IV-Mixed Sampler is a novel training-free algorithm for video diffusion models.
It uses IDMs to enhance the quality of each video frame and VDMs to ensure the temporal coherence of the video during the sampling process.
It achieves state-of-the-art performance on four benchmarks including UCF-101-FVD, MSR-VTT-FVD, Chronomagic-Bench-150, and Chronomagic-Bench-1649.
- Score: 22.79121512759783
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The multi-step sampling mechanism, a key feature of visual diffusion models, has significant potential to replicate the success of OpenAI's Strawberry in enhancing performance by increasing the inference computational cost. Sufficient prior studies have demonstrated that correctly scaling up computation in the sampling process can successfully lead to improved generation quality, enhanced image editing, and compositional generalization. While there have been rapid advancements in developing inference-heavy algorithms for improved image generation, relatively little work has explored inference scaling laws in video diffusion models (VDMs). Furthermore, existing research shows only minimal performance gains that are perceptible to the naked eye. To address this, we design a novel training-free algorithm IV-Mixed Sampler that leverages the strengths of image diffusion models (IDMs) to assist VDMs surpass their current capabilities. The core of IV-Mixed Sampler is to use IDMs to significantly enhance the quality of each video frame and VDMs ensure the temporal coherence of the video during the sampling process. Our experiments have demonstrated that IV-Mixed Sampler achieves state-of-the-art performance on 4 benchmarks including UCF-101-FVD, MSR-VTT-FVD, Chronomagic-Bench-150, and Chronomagic-Bench-1649. For example, the open-source Animatediff with IV-Mixed Sampler reduces the UMT-FVD score from 275.2 to 228.6, closing to 223.1 from the closed-source Pika-2.0.
Related papers
- Learning Few-Step Diffusion Models by Trajectory Distribution Matching [18.229753357571116]
Trajectory Distribution Matching (TDM) is a unified distillation paradigm that combines the strengths of distribution and trajectory matching.
We develop a sampling-steps-aware objective that decouples learning targets across different steps, enabling more adjustable sampling.
Our model, TDM, outperforms existing methods on various backbones, delivering superior quality and significantly reduced training costs.
arXiv Detail & Related papers (2025-03-09T15:53:49Z) - PQD: Post-training Quantization for Efficient Diffusion Models [4.809939957401427]
We propose a novel post-training quantization for diffusion models (PQD)
We show that our proposed method is able to directly quantize full-precision diffusion models into 8-bit or 4-bit models while maintaining comparable performance in a training-free manner.
arXiv Detail & Related papers (2024-12-30T19:55:59Z) - TCAQ-DM: Timestep-Channel Adaptive Quantization for Diffusion Models [49.65286242048452]
We propose a novel method dubbed Timestep-Channel Adaptive Quantization for Diffusion Models (TCAQ-DM)
The proposed method substantially outperforms the state-of-the-art approaches in most cases.
arXiv Detail & Related papers (2024-12-21T16:57:54Z) - Accelerating Video Diffusion Models via Distribution Matching [26.475459912686986]
This work introduces a novel framework for diffusion distillation and distribution matching.
Our approach focuses on distilling pre-trained diffusion models into a more efficient few-step generator.
By leveraging a combination of video GAN loss and a novel 2D score distribution matching loss, we demonstrate the potential to generate high-quality video frames.
arXiv Detail & Related papers (2024-12-08T11:36:32Z) - Advancing Diffusion Models: Alias-Free Resampling and Enhanced Rotational Equivariance [0.0]
diffusion models are still challenged by model-induced artifacts and limited stability in image fidelity.
We propose the integration of alias-free resampling layers into the UNet architecture of diffusion models.
Our experimental results on benchmark datasets, including CIFAR-10, MNIST, and MNIST-M, reveal consistent gains in image quality.
arXiv Detail & Related papers (2024-11-14T04:23:28Z) - Sequential Posterior Sampling with Diffusion Models [15.028061496012924]
We propose a novel approach that models the transition dynamics to improve the efficiency of sequential diffusion posterior sampling in conditional image synthesis.
We demonstrate the effectiveness of our approach on a real-world dataset of high frame rate cardiac ultrasound images.
Our method opens up new possibilities for real-time applications of diffusion models in imaging and other domains requiring real-time inference.
arXiv Detail & Related papers (2024-09-09T07:55:59Z) - T2V-Turbo: Breaking the Quality Bottleneck of Video Consistency Model with Mixed Reward Feedback [111.40967379458752]
We introduce T2V-Turbo, which integrates feedback from a mixture of differentiable reward models into the consistency distillation process of a pre-trained T2V model.
Remarkably, the 4-step generations from our T2V-Turbo achieve the highest total score on VBench, even surpassing Gen-2 and Pika.
arXiv Detail & Related papers (2024-05-29T04:26:17Z) - DEEM: Diffusion Models Serve as the Eyes of Large Language Models for Image Perception [66.88792390480343]
We propose DEEM, a simple but effective approach that utilizes the generative feedback of diffusion models to align the semantic distributions of the image encoder.
DEEM exhibits enhanced robustness and a superior capacity to alleviate model hallucinations while utilizing fewer trainable parameters, less pre-training data, and a smaller base model size.
arXiv Detail & Related papers (2024-05-24T05:46:04Z) - SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions [5.100085108873068]
We present two models, SDXS-512 and SDXS-1024, achieving inference speeds of approximately 100 FPS (30x faster than SD v1.5) and 30 FPS (60x faster than SDXL) on a single GPU.
Our training approach offers promising applications in image-conditioned control, facilitating efficient image-to-image translation.
arXiv Detail & Related papers (2024-03-25T11:16:23Z) - Latent Consistency Models: Synthesizing High-Resolution Images with
Few-Step Inference [60.32804641276217]
We propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs.
A high-quality 768 x 768 24-step LCM takes only 32 A100 GPU hours for training.
We also introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets.
arXiv Detail & Related papers (2023-10-06T17:11:58Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
Post-training quantization (PTQ) is considered a go-to compression method for other tasks.
We propose a novel PTQ method specifically tailored towards the unique multi-timestep pipeline and model architecture.
We show that our proposed method is able to quantize full-precision unconditional diffusion models into 4-bit while maintaining comparable performance.
arXiv Detail & Related papers (2023-02-08T19:38:59Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
We present MMD-DDM, a novel method for fast sampling of diffusion models.
Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps.
Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models.
arXiv Detail & Related papers (2023-01-19T09:48:07Z) - Diffusion Glancing Transformer for Parallel Sequence to Sequence
Learning [52.72369034247396]
We propose the diffusion glancing transformer, which employs a modality diffusion process and residual glancing sampling.
DIFFGLAT achieves better generation accuracy while maintaining fast decoding speed compared with both autoregressive and non-autoregressive models.
arXiv Detail & Related papers (2022-12-20T13:36:25Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z) - Improved Vector Quantized Diffusion Models [34.23016989464389]
VQ-Diffusion is a powerful generative model for text-to-image synthesis.
It can generate low-quality samples or weakly correlated images with text input.
We propose two techniques to further improve the sample quality of VQ-Diffusion.
arXiv Detail & Related papers (2022-05-31T17:59:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.