LLMTemporalComparator: A Tool for Analysing Differences in Temporal Adaptations of Large Language Models
- URL: http://arxiv.org/abs/2410.04195v1
- Date: Sat, 05 Oct 2024 15:17:07 GMT
- Title: LLMTemporalComparator: A Tool for Analysing Differences in Temporal Adaptations of Large Language Models
- Authors: Reinhard Friedrich Fritsch, Adam Jatowt,
- Abstract summary: This study addresses the challenges of analyzing temporal discrepancies in large language models (LLMs) trained on data from different time periods.
We propose a novel system that compares in a systematic way the outputs of two LLM versions based on user-defined queries.
- Score: 17.021220773165016
- License:
- Abstract: This study addresses the challenges of analyzing temporal discrepancies in large language models (LLMs) trained on data from different time periods. To facilitate the automatic exploration of these differences, we propose a novel system that compares in a systematic way the outputs of two LLM versions based on user-defined queries. The system first generates a hierarchical topic structure rooted in a user-specified keyword, allowing for an organized comparison of topical categories. Subsequently, it evaluates the generated text by both LLMs to identify differences in vocabulary, information presentation, and underlying themes. This fully automated approach not only streamlines the identification of shifts in public opinion and cultural norms but also enhances our understanding of the adaptability and robustness of machine learning applications in response to temporal changes. By fostering research in continual model adaptation and comparative summarization, this work contributes to the development of more transparent machine learning models capable of capturing the nuances of evolving societal contexts.
Related papers
- Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
Generative training has enabled Vision-Language Models (VLMs) to tackle various complex tasks.
Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval.
This paper proposes a unified approach that integrates the strengths of both paradigms.
arXiv Detail & Related papers (2024-11-01T01:51:31Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - A Systematic Analysis on the Temporal Generalization of Language Models in Social Media [12.035331011654078]
This paper focuses on temporal shifts in social media and, in particular, Twitter.
We propose a unified evaluation scheme to assess the performance of language models (LMs) under temporal shift.
arXiv Detail & Related papers (2024-05-15T05:41:06Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Temporal and Semantic Evaluation Metrics for Foundation Models in Post-Hoc Analysis of Robotic Sub-tasks [1.8124328823188356]
We present an automated framework to decompose trajectory data into temporally bounded and natural language-based descriptive sub-tasks.
Our framework provides both time-based and language-based descriptions for lower-level sub-tasks that comprise full trajectories.
The metrics measure the temporal alignment and semantic fidelity of language descriptions between two sub-task decompositions.
arXiv Detail & Related papers (2024-03-25T22:39:20Z) - Automated Assessment of Students' Code Comprehension using LLMs [0.3293989832773954]
Large Language Models (LLMs) and encoder-based Semantic Textual Similarity (STS) models are assessed.
Our findings indicate that LLMs, when prompted in few-shot and chain-of-thought setting, perform comparable to fine-tuned encoder-based models in evaluating students' short answers in programming domain.
arXiv Detail & Related papers (2023-12-19T20:39:12Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQM is a prompting technique which asks large language models to identify and categorize errors in translations.
We study the impact of labeled data through in-context learning and finetuning.
We then evaluate AutoMQM with PaLM-2 models, and we find that it improves performance compared to just prompting for scores.
arXiv Detail & Related papers (2023-08-14T17:17:21Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - Incorporating Linguistic Knowledge for Abstractive Multi-document
Summarization [20.572283625521784]
We develop a neural network based abstractive multi-document summarization (MDS) model.
We process the dependency information into the linguistic-guided attention mechanism.
With the help of linguistic signals, sentence-level relations can be correctly captured.
arXiv Detail & Related papers (2021-09-23T08:13:35Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - Evaluating Online Continual Learning with CALM [3.49781504808707]
Online Continual Learning studies learning over a continuous data stream without observing any single example more than once.
We propose a new benchmark for OCL based on language modelling in which input alternates between different languages and domains without any explicit delimitation.
We also propose new metrics to study catastrophic forgetting in this setting and evaluate multiple baseline models based on compositions of experts.
arXiv Detail & Related papers (2020-04-07T13:17:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.