Exploring Strengths and Weaknesses of Super-Resolution Attack in Deepfake Detection
- URL: http://arxiv.org/abs/2410.04205v1
- Date: Sat, 5 Oct 2024 15:47:34 GMT
- Title: Exploring Strengths and Weaknesses of Super-Resolution Attack in Deepfake Detection
- Authors: Davide Alessandro Coccomini, Roberto Caldelli, Fabrizio Falchi, Claudio Gennaro, Giuseppe Amato,
- Abstract summary: We explore the potential of super-resolution attacks based on different super-resolution techniques.
We show that the super-resolution process is effective in hiding the artifacts introduced by deepfake generation models but fails in hiding the traces contained in fully synthetic images.
We propose some changes to the detectors' training process to improve their robustness to this kind of attack.
- Score: 9.372782789857803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image manipulation is rapidly evolving, allowing the creation of credible content that can be used to bend reality. Although the results of deepfake detectors are promising, deepfakes can be made even more complicated to detect through adversarial attacks. They aim to further manipulate the image to camouflage deepfakes' artifacts or to insert signals making the image appear pristine. In this paper, we further explore the potential of super-resolution attacks based on different super-resolution techniques and with different scales that can impact the performance of deepfake detectors with more or less intensity. We also evaluated the impact of the attack on more diverse datasets discovering that the super-resolution process is effective in hiding the artifacts introduced by deepfake generation models but fails in hiding the traces contained in fully synthetic images. Finally, we propose some changes to the detectors' training process to improve their robustness to this kind of attack.
Related papers
- Adversarial Magnification to Deceive Deepfake Detection through Super Resolution [9.372782789857803]
This paper explores the application of super resolution techniques as a possible adversarial attack in deepfake detection.
We demonstrate that minimal changes made by these methods in the visual appearance of images can have a profound impact on the performance of deepfake detection systems.
We propose a novel attack using super resolution as a quick, black-box and effective method to camouflage fake images and/or generate false alarms on pristine images.
arXiv Detail & Related papers (2024-07-02T21:17:36Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Turn Fake into Real: Adversarial Head Turn Attacks Against Deepfake
Detection [58.1263969438364]
We propose adversarial head turn (AdvHeat) as the first attempt at 3D adversarial face views against deepfake detectors.
Experiments validate the vulnerability of various detectors to AdvHeat in realistic, black-box scenarios.
Additional analyses demonstrate that AdvHeat is better than conventional attacks on both the cross-detector transferability and robustness to defenses.
arXiv Detail & Related papers (2023-09-03T07:01:34Z) - Dual Adversarial Resilience for Collaborating Robust Underwater Image
Enhancement and Perception [54.672052775549]
In this work, we introduce a collaborative adversarial resilience network, dubbed CARNet, for underwater image enhancement and subsequent detection tasks.
We propose a synchronized attack training strategy with both visual-driven and perception-driven attacks enabling the network to discern and remove various types of attacks.
Experiments demonstrate that the proposed method outputs visually appealing enhancement images and perform averagely 6.71% higher detection mAP than state-of-the-art methods.
arXiv Detail & Related papers (2023-09-03T06:52:05Z) - How Generalizable are Deepfake Image Detectors? An Empirical Study [4.42204674141385]
We present the first empirical study on the generalizability of deepfake detectors.
Our study utilizes six deepfake datasets, five deepfake image detection methods, and two model augmentation approaches.
We find that detectors are learning unwanted properties specific to synthesis methods and struggling to extract discriminative features.
arXiv Detail & Related papers (2023-08-08T10:30:34Z) - On the Vulnerability of DeepFake Detectors to Attacks Generated by
Denoising Diffusion Models [0.5827521884806072]
We investigate the vulnerability of single-image deepfake detectors to black-box attacks created by the newest generation of generative methods.
Our experiments are run on FaceForensics++, a widely used deepfake benchmark consisting of manipulated images.
Our findings indicate that employing just a single denoising diffusion step in the reconstruction process of a deepfake can significantly reduce the likelihood of detection.
arXiv Detail & Related papers (2023-07-11T15:57:51Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
We propose a novel deepfake detector, called SeeABLE, that formalizes the detection problem as a (one-class) out-of-distribution detection task.
SeeABLE pushes perturbed faces towards predefined prototypes using a novel regression-based bounded contrastive loss.
We show that our model convincingly outperforms competing state-of-the-art detectors, while exhibiting highly encouraging generalization capabilities.
arXiv Detail & Related papers (2022-11-21T09:38:30Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
arXiv Detail & Related papers (2021-05-29T21:22:24Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Fighting Deepfake by Exposing the Convolutional Traces on Images [0.0]
Mobile apps like FACEAPP make use of the most advanced Generative Adversarial Networks (GAN) to produce extreme transformations on human face photos.
This kind of media object took the name of Deepfake and raised a new challenge in the multimedia forensics field: the Deepfake detection challenge.
In this paper, a new approach aimed to extract a Deepfake fingerprint from images is proposed.
arXiv Detail & Related papers (2020-08-07T08:49:23Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.