Relational Diffusion Distillation for Efficient Image Generation
- URL: http://arxiv.org/abs/2410.07679v2
- Date: Sat, 12 Oct 2024 01:46:23 GMT
- Title: Relational Diffusion Distillation for Efficient Image Generation
- Authors: Weilun Feng, Chuanguang Yang, Zhulin An, Libo Huang, Boyu Diao, Fei Wang, Yongjun Xu,
- Abstract summary: Diffusion model's high delay hinders its wide application in edge devices with scarce computing resources.
We propose Diffusion Distillation (RDD), a novel distillation method tailored specifically for distilling diffusion models.
Our proposed RDD leads to 1.47 FID decrease under 1 sampling step compared to state-of-the-art diffusion distillation methods and achieving 256x speed-up.
- Score: 27.127061578093674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although the diffusion model has achieved remarkable performance in the field of image generation, its high inference delay hinders its wide application in edge devices with scarce computing resources. Therefore, many training-free sampling methods have been proposed to reduce the number of sampling steps required for diffusion models. However, they perform poorly under a very small number of sampling steps. Thanks to the emergence of knowledge distillation technology, the existing training scheme methods have achieved excellent results at very low step numbers. However, the current methods mainly focus on designing novel diffusion model sampling methods with knowledge distillation. How to transfer better diffusion knowledge from teacher models is a more valuable problem but rarely studied. Therefore, we propose Relational Diffusion Distillation (RDD), a novel distillation method tailored specifically for distilling diffusion models. Unlike existing methods that simply align teacher and student models at pixel level or feature distributions, our method introduces cross-sample relationship interaction during the distillation process and alleviates the memory constraints induced by multiple sample interactions. Our RDD significantly enhances the effectiveness of the progressive distillation framework within the diffusion model. Extensive experiments on several datasets (e.g., CIFAR-10 and ImageNet) demonstrate that our proposed RDD leads to 1.47 FID decrease under 1 sampling step compared to state-of-the-art diffusion distillation methods and achieving 256x speed-up compared to DDIM strategy. Code is available at https://github.com/cantbebetter2/RDD.
Related papers
- DDIL: Improved Diffusion Distillation With Imitation Learning [57.3467234269487]
Diffusion models excel at generative modeling (e.g., text-to-image) but sampling requires multiple denoising network passes.
Progressive distillation or consistency distillation have shown promise by reducing the number of passes.
We show that DDIL consistency improves on baseline algorithms of progressive distillation (PD), Latent consistency models (LCM) and Distribution Matching Distillation (DMD2)
arXiv Detail & Related papers (2024-10-15T18:21:47Z) - Distillation-Free One-Step Diffusion for Real-World Image Super-Resolution [81.81748032199813]
We propose a Distillation-Free One-Step Diffusion model.
Specifically, we propose a noise-aware discriminator (NAD) to participate in adversarial training.
We improve the perceptual loss with edge-aware DISTS (EA-DISTS) to enhance the model's ability to generate fine details.
arXiv Detail & Related papers (2024-10-05T16:41:36Z) - Accelerating Diffusion Models with One-to-Many Knowledge Distillation [35.130782477699704]
We introduce one-to-many knowledge distillation (O2MKD), which distills a single teacher diffusion model into multiple student diffusion models.
Experiments on CIFAR10, LSUN Church, CelebA-HQ with DDPM and COCO30K with Stable Diffusion show that O2MKD can be applied to previous knowledge distillation and fast sampling methods to achieve significant acceleration.
arXiv Detail & Related papers (2024-10-05T15:10:04Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.
We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation [24.236841051249243]
Distillation methods aim to shift the model from many-shot to single-step inference.
We introduce Latent Adversarial Diffusion Distillation (LADD), a novel distillation approach overcoming the limitations of ADD.
In contrast to pixel-based ADD, LADD utilizes generative features from pretrained latent diffusion models.
arXiv Detail & Related papers (2024-03-18T17:51:43Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.