論文の概要: Pareto Control Barrier Function for Inner Safe Set Maximization Under Input Constraints
- arxiv url: http://arxiv.org/abs/2410.04260v1
- Date: Sat, 5 Oct 2024 18:45:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 08:49:52.181669
- Title: Pareto Control Barrier Function for Inner Safe Set Maximization Under Input Constraints
- Title(参考訳): 入力制約下における内部安全設定最大化のためのパレート制御バリア関数
- Authors: Xiaoyang Cao, Zhe Fu, Alexandre M. Bayen,
- Abstract要約: 入力制約下での動的システムの内部安全集合を最大化するPCBFアルゴリズムを提案する。
逆振り子に対するハミルトン・ヤコビの到達性との比較と,12次元四元数系のシミュレーションにより,その有効性を検証する。
その結果,PCBFは既存の手法を一貫して上回り,入力制約下での安全性を確保した。
- 参考スコア(独自算出の注目度): 50.920465513162334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article introduces the Pareto Control Barrier Function (PCBF) algorithm to maximize the inner safe set of dynamical systems under input constraints. Traditional Control Barrier Functions (CBFs) ensure safety by maintaining system trajectories within a safe set but often fail to account for realistic input constraints. To address this problem, we leverage the Pareto multi-task learning framework to balance competing objectives of safety and safe set volume. The PCBF algorithm is applicable to high-dimensional systems and is computationally efficient. We validate its effectiveness through comparison with Hamilton-Jacobi reachability for an inverted pendulum and through simulations on a 12-dimensional quadrotor system. Results show that the PCBF consistently outperforms existing methods, yielding larger safe sets and ensuring safety under input constraints.
- Abstract(参考訳): 本稿では,入力制約下での動的システムの内部安全集合を最大化するために,Pareto Control Barrier Function (PCBF)アルゴリズムを紹介する。
従来の制御バリア関数(CBF)は、安全なセット内でシステムトラジェクトリを維持することで安全性を確保するが、現実的な入力制約を考慮できないことが多い。
この問題に対処するために、我々はParetoマルチタスク学習フレームワークを活用し、競合する安全性と安全な設定ボリュームのバランスをとる。
PCBFアルゴリズムは高次元システムに適用でき、計算効率が高い。
逆振り子に対するハミルトン・ヤコビの到達性との比較と,12次元四元数系のシミュレーションにより,その有効性を検証する。
その結果,PCBFは既存の手法を一貫して上回り,入力制約下での安全性を確保した。
関連論文リスト
- Reinforcement Learning-based Receding Horizon Control using Adaptive Control Barrier Functions for Safety-Critical Systems [14.166970599802324]
最適制御法は、安全クリティカルな問題に対する解決策を提供するが、容易に難解になる。
モデル予測制御を利用した強化学習に基づく回帰水平制御手法を提案する。
我々は、コネクテッド・アンド・オートマチック・ビークルにおける自動マージ制御問題に適用し、本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-03-26T02:49:08Z) - Learning Performance-Oriented Control Barrier Functions Under Complex Safety Constraints and Limited Actuation [5.62479170374811]
制御バリア関数(CBF)は非線形制御系力学を制約するエレガントなフレームワークを提供する。
これらの課題に包括的に対処する,新たな自己教師型学習フレームワークを導入する。
本研究では,2次元ダブルインテグレータ(DI)システムと7次元固定翼航空機システムに対するアプローチを検証する。
論文 参考訳(メタデータ) (2024-01-11T02:51:49Z) - Safe Neural Control for Non-Affine Control Systems with Differentiable
Control Barrier Functions [58.19198103790931]
本稿では,非アフィン制御系における安全クリティカル制御の問題に対処する。
制御バリア関数(CBF)を用いて,状態制約と制御制約の2次コストの最適化を2次プログラムのシーケンス(QP)にサブ最適化できることが示されている。
我々は,高次CBFをニューラル常微分方程式に基づく学習モデルに差分CBFとして組み込んで,非アフィン制御系の安全性を保証する。
論文 参考訳(メタデータ) (2023-09-06T05:35:48Z) - Stable and Safe Reinforcement Learning via a Barrier-Lyapunov
Actor-Critic Approach [1.8924647429604111]
Barrier-Lyapunov Actor-Critic(BLAC)フレームワークは、前述のシステムの安全性と安定性の維持を支援する。
RLベースのコントローラが有効な制御信号を提供できない場合、追加のバックアップコントローラが導入される。
論文 参考訳(メタデータ) (2023-04-08T16:48:49Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
制御バリア関数(CBF)と制御リアプノフ関数(CLF)は、制御システムの安全性と安定性をそれぞれ強化するための一般的なツールである。
本稿では, CBF と CLF を用いた安全クリティカルコントローラにおいて, モデル不確実性に対処するためのガウスプロセス(GP)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-13T23:08:49Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
強化学習フレームワークは、CBFおよびCLF制約に存在するモデル不確実性を学ぶ。
RL-CBF-CLF-QPは、安全制約におけるモデル不確実性の問題に対処する。
論文 参考訳(メタデータ) (2020-04-16T10:51:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。