Practical Application of the Quantum Carleman Lattice Boltzmann Method in Industrial CFD Simulations
- URL: http://arxiv.org/abs/2504.13033v1
- Date: Thu, 17 Apr 2025 15:41:48 GMT
- Title: Practical Application of the Quantum Carleman Lattice Boltzmann Method in Industrial CFD Simulations
- Authors: Francesco Turro, Alessandra Lignarolo, Daniele Dragoni,
- Abstract summary: This work presents a practical numerical assessment of a hybrid quantum-classical approach to CFD based on the Lattice Boltzmann Method (LBM)<n>We evaluate this method on three benchmark cases featuring different boundary conditions, periodic, bounceback, and moving wall.<n>Our results confirm the validity of the approach, achieving median error fidelities on the order of $10-3$ and success probabilities sufficient for practical quantum state sampling.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Computational Fluid Dynamics simulations are crucial in industrial applications but require extensive computational resources, particularly for extreme turbulent regimes. While classical digital approaches remain the standard, quantum computing promises a breakthrough by enabling a more efficient encoding of large-scale simulations with a limited number of qubits. This work presents a practical numerical assessment of a hybrid quantum-classical approach to CFD based on the Lattice Boltzmann Method (LBM). The inherently non-linear LBM equations are linearized via a Carleman expansion and solved using the quantum Harrow Hassidim Lloyd algorithm (HHL). We evaluate this method on three benchmark cases featuring different boundary conditions, periodic, bounceback, and moving wall, using statevector emulation on high-performance computing resources. Our results confirm the validity of the approach, achieving median error fidelities on the order of $10^{-3}$ and success probabilities sufficient for practical quantum state sampling. Notably, the spectral properties of small lattice systems closely approximate those of larger ones, suggesting a pathway to mitigate one of HHL's bottlenecks: eigenvalue pre-evaluation.
Related papers
- Branch-and-bound digitized counterdiabatic quantum optimization [39.58317527488534]
Branch-and-bound algorithms effectively solve convex optimization problems, relying on the relaxation the objective function to obtain tight lower bounds.
We propose a branch-and-bound digitized counterdiabatic quantum optimization (BB-DCQO) algorithm that addresses the relaxation difficulties.
arXiv Detail & Related papers (2025-04-21T18:19:19Z) - SparQSim: Simulating Scalable Quantum Algorithms via Sparse Quantum State Representations [3.7112784544167248]
We present SparQSim, a quantum simulator implemented in C++ inspired by the Feynman-based method.
SparQSim operates at the register level by storing only the nonzero components of the quantum state.
arXiv Detail & Related papers (2025-03-19T11:23:26Z) - Efficient Classical Computation of Single-Qubit Marginal Measurement Probabilities to Simulate Certain Classes of Quantum Algorithms [0.0]
We introduce a novel CNOT "functional" that leverages neural networks to generate unitary transformations.<n>For random circuit simulations, our modified QC-DFT enables efficient computation of single-qubit marginal measurement probabilities.
arXiv Detail & Related papers (2024-11-11T09:30:33Z) - Differentiable Quantum Computing for Large-scale Linear Control [26.118874431217165]
We introduce an end-to-end quantum algorithm for linear-quadratic control with provable speedups.
Our algorithm, based on a policy gradient method, incorporates a novel quantum subroutine for solving the matrix Lyapunov equation.
arXiv Detail & Related papers (2024-11-03T00:54:33Z) - Enabling Large-Scale and High-Precision Fluid Simulations on Near-Term Quantum Computers [17.27937804402152]
Quantum computational fluid dynamics (QCFD) offers a promising alternative to classical computational fluid dynamics (CFD)
This paper introduces a comprehensive QCFD method, including an iterative method "Iterative-QLS" that suppresses error in quantum linear solver.
We implement our method on a superconducting quantum computer, demonstrating successful simulations of steady Poiseuille flow and unsteady acoustic wave propagation.
arXiv Detail & Related papers (2024-06-10T07:21:23Z) - Avoiding barren plateaus via Gaussian Mixture Model [6.0599055267355695]
Variational quantum algorithms are one of the most representative algorithms in quantum computing.
They face challenges when dealing with large numbers of qubits, deep circuit layers, or global cost functions, making them often untrainable.
arXiv Detail & Related papers (2024-02-21T03:25:26Z) - A multiple-circuit approach to quantum resource reduction with application to the quantum lattice Boltzmann method [39.671915199737846]
We introduce a multiple-circuit algorithm for a quantum lattice Boltzmann method (QLBM) solve of the incompressible Navier--Stokes equations.<n>The presented method is validated and demonstrated for 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - Applicability of Measurement-based Quantum Computation towards Physically-driven Variational Quantum Eigensolver [17.975555487972166]
Variational quantum algorithms are considered one of the most promising methods for obtaining near-term quantum advantages.
The roadblock to developing quantum algorithms with the measurement-based quantum computation scheme is resource cost.
We propose an efficient measurement-based quantum algorithm for quantum many-body system simulation tasks, called measurement-based Hamiltonian variational ansatz (MBHVA)
arXiv Detail & Related papers (2023-07-19T08:07:53Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Benchmarking a novel efficient numerical method for localized 1D
Fermi-Hubbard systems on a quantum simulator [0.0]
We show that a quantum simulator can be used to in-effect solve for the dynamics of a many-body system.
We use a neutral-atom Fermi-Hubbard quantum simulator with $L_textexpsimeq290$ lattice sites to benchmark its performance.
We derive a simple prediction of the behaviour of interacting Bloch oscillations for spin-imbalanced Fermi-Hubbard systems.
arXiv Detail & Related papers (2021-05-13T16:03:11Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.