An em algorithm for quantum Boltzmann machines
- URL: http://arxiv.org/abs/2507.21569v1
- Date: Tue, 29 Jul 2025 07:59:22 GMT
- Title: An em algorithm for quantum Boltzmann machines
- Authors: Takeshi Kimura, Kohtaro Kato, Masahito Hayashi,
- Abstract summary: We develop a quantum version of the em algorithm for training quantum Boltzmann machines.<n>We implement the algorithm on a semi-quantum restricted Boltzmann machine, where quantum effects are confined to the hidden layer.
- Score: 40.40469032705598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a quantum version of the em algorithm for training quantum Boltzmann machines. The em algorithm is an information-geometric extension of the well-known expectation-maximization (EM) algorithm, offering a structured alternative to gradient-based methods with potential advantages in stability and convergence. We implement the algorithm on a semi-quantum restricted Boltzmann machine, where quantum effects are confined to the hidden layer. This structure enables analytical update rules while preserving quantum expressivity. Numerical experiments on benchmark datasets show that the proposed method achieves stable learning and outperforms gradient-based training in several cases. These results demonstrate the potential of information-geometric optimization for quantum machine learning, particularly in settings where standard methods struggle due to non-commutativity or vanishing gradients.
Related papers
- Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Fast Expectation Value Calculation Speedup of Quantum Approximate Optimization Algorithm: HoLCUs QAOA [55.2480439325792]
We present a new method for calculating expectation values of operators that can be expressed as a linear combination of unitary (LCU) operators.<n>This method is general for any quantum algorithm and is of particular interest in the acceleration of variational quantum algorithms.
arXiv Detail & Related papers (2025-03-03T17:15:23Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Improved Quantum Algorithms for Eigenvalues Finding and Gradient Descent [0.0]
Block encoding is a key ingredient in the recently developed quantum singular value transformation (QSVT) framework.<n>In this article, we affirm this perspective by leveraging block encoding to substantially enhance two previously proposed quantum algorithms.<n>Our findings demonstrate that even just elementary operations within the unitary block encoding framework can eliminate major scaling factors.
arXiv Detail & Related papers (2023-12-22T15:59:03Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Towards Efficient Ansatz Architecture for Variational Quantum Algorithms [12.728075253374062]
Variational quantum algorithms are expected to demonstrate the advantage of quantum computing on noisy quantum computers.
Training such variational quantum algorithms suffers from gradient vanishing as the size of the algorithm increases.
We propose a novel training scheme to mitigate such noise-induced gradient vanishing.
arXiv Detail & Related papers (2021-11-26T19:41:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
We show that policy-gradient-based reinforcement learning algorithms are well suited for optimizing the variational parameters of QAOA in a noise-robust fashion.
We analyze the performance of the algorithm for quantum state transfer problems in single- and multi-qubit systems.
arXiv Detail & Related papers (2020-02-04T00:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.