Comprehensive Monitoring of Air Pollution Hotspots Using Sparse Sensor Networks
- URL: http://arxiv.org/abs/2410.04309v2
- Date: Wed, 20 Nov 2024 23:55:02 GMT
- Title: Comprehensive Monitoring of Air Pollution Hotspots Using Sparse Sensor Networks
- Authors: Ankit Bhardwaj, Ananth Balashankar, Shiva Iyer, Nita Soans, Anant Sudarshan, Rohini Pande, Lakshminarayanan Subramanian,
- Abstract summary: We enhanced New Delhi's existing sensor network with 28 low-cost sensors, collecting PM2.5 data over 30 months from May 1, 2018, to Nov 1, 2020.
Applying established definitions of hotspots to this data, we found the existence of 189 hidden hotspots apart from confirming 660 hotspots detected by the public network.
Our findings underscore the importance of integrating data-driven predictive models with physics-based mechanistic models for scalable and robust air pollution management in resource-constrained settings.
- Score: 5.964549794346141
- License:
- Abstract: Urban air pollution hotspots pose significant health risks, yet their detection and analysis remain limited by the sparsity of public sensor networks. This paper addresses this challenge by combining predictive modeling and mechanistic approaches to comprehensively monitor pollution hotspots. We enhanced New Delhi's existing sensor network with 28 low-cost sensors, collecting PM2.5 data over 30 months from May 1, 2018, to Nov 1, 2020. Applying established definitions of hotspots to this data, we found the existence of additional 189 hidden hotspots apart from confirming 660 hotspots detected by the public network. Using predictive techniques like Space-Time Kriging, we identified hidden hotspots with 95% precision and 88% recall with 50% sensor failure rate, and with 98% precision and 95% recall with 50% missing sensors. The projected results of our predictive models were further compiled into policy recommendations for public authorities. Additionally, we developed a Gaussian Plume Dispersion Model to understand the mechanistic underpinnings of hotspot formation, incorporating an emissions inventory derived from local sources. Our mechanistic model is able to explain 65% of observed transient hotspots. Our findings underscore the importance of integrating data-driven predictive models with physics-based mechanistic models for scalable and robust air pollution management in resource-constrained settings.
Related papers
- Efficient Unsupervised Domain Adaptation Regression for Spatial-Temporal Air Quality Sensor Fusion [6.963971634605796]
We propose a novel unsupervised domain adaptation (UDA) method specifically tailored for regression tasks on graph-structured data.
We incorporate spatial-temporal graph neural networks (STGNNs) to model the relationships between sensors.
Our approach allows low-cost IoT sensors to learn calibration parameters from expensive reference sensors.
arXiv Detail & Related papers (2024-11-11T12:20:57Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Air Pollution Hotspot Detection and Source Feature Analysis using
Cross-domain Urban Data [2.458537954999774]
Areas adjacent to pollution sources often have high ambient pollution concentrations, and those areas are commonly referred to as air pollution hotspots.
We propose a two-step approach to detect hotspots from mobile sensing data, which includes local spike detection and sample-weighted clustering.
As a soft-validation, we build hotspot inference models for cities with and without mobile sensing data.
arXiv Detail & Related papers (2022-11-15T18:44:03Z) - Hybrid Cloud-Edge Collaborative Data Anomaly Detection in Industrial
Sensor Networks [16.06269863500741]
This paper proposes a hybrid anomaly detection approach in cloud-edge collaboration industrial sensor networks.
The proposed approach can achieve an overall 11.19% increase in Recall and an impressive 14.29% improvement in F1-score.
arXiv Detail & Related papers (2022-04-21T08:03:22Z) - A deep mixture density network for outlier-corrected interpolation of
crowd-sourced weather data [3.1542695050861544]
We present a deep learning approach for Bayesian-temporal modelling of environmental variables with automatic detection.
For our example application, we use the Met Office's Weather Observation Website data, an archive of observations from around 1900 privately run and unofficial weather stations across the British Isles.
arXiv Detail & Related papers (2022-01-25T18:54:59Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Neural Network Virtual Sensors for Fuel Injection Quantities with
Provable Performance Specifications [71.1911136637719]
We show how provable guarantees can be naturally applied to other real world settings.
We show how specific intervals of fuel injection quantities can be targeted to maximize robustness for certain ranges.
arXiv Detail & Related papers (2020-06-30T23:33:17Z) - Analytical Equations based Prediction Approach for PM2.5 using
Artificial Neural Network [0.0]
Particulate Matter (PM2.5) is one of the important particulate pollutants to measure the Air Quality Index (AQI)
The conventional instruments used by the air quality monitoring stations to monitor PM2.5 are costly, bulkier, time-consuming, and power-hungry.
This article presents analytical equations based prediction approach for PM2.5 using an Artificial Neural Network (ANN)
arXiv Detail & Related papers (2020-02-26T11:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.