Analytical Equations based Prediction Approach for PM2.5 using
Artificial Neural Network
- URL: http://arxiv.org/abs/2002.11416v1
- Date: Wed, 26 Feb 2020 11:39:18 GMT
- Title: Analytical Equations based Prediction Approach for PM2.5 using
Artificial Neural Network
- Authors: Jalpa Shah and Biswajit Mishra
- Abstract summary: Particulate Matter (PM2.5) is one of the important particulate pollutants to measure the Air Quality Index (AQI)
The conventional instruments used by the air quality monitoring stations to monitor PM2.5 are costly, bulkier, time-consuming, and power-hungry.
This article presents analytical equations based prediction approach for PM2.5 using an Artificial Neural Network (ANN)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Particulate matter pollution is one of the deadliest types of air pollution
worldwide due to its significant impacts on the global environment and human
health. Particulate Matter (PM2.5) is one of the important particulate
pollutants to measure the Air Quality Index (AQI). The conventional instruments
used by the air quality monitoring stations to monitor PM2.5 are costly,
bulkier, time-consuming, and power-hungry. Furthermore, due to limited data
availability and non-scalability, these stations cannot provide high spatial
and temporal resolution in real-time. To overcome the disadvantages of existing
methodology this article presents analytical equations based prediction
approach for PM2.5 using an Artificial Neural Network (ANN). Since the derived
analytical equations for the prediction can be computed using a Wireless Sensor
Node (WSN) or low-cost processing tool, it demonstrates the usefulness of the
proposed approach. Moreover, the study related to correlation among the PM2.5
and other pollutants is performed to select the appropriate predictors. The
large authenticate data set of Central Pollution Control Board (CPCB) online
station, India is used for the proposed approach. The RMSE and coefficient of
determination (R2) obtained for the proposed prediction approach using eight
predictors are 1.7973 ug/m3 and 0.9986 respectively. While the proposed
approach results show RMSE of 7.5372 ug/m3 and R2 of 0.9708 using three
predictors. Therefore, the results demonstrate that the proposed approach is
one of the promising approaches for monitoring PM2.5 without power-hungry gas
sensors and bulkier analyzers.
Related papers
- Causal Deciphering and Inpainting in Spatio-Temporal Dynamics via Diffusion Model [45.45700202300292]
CaPaint aims to identify causal regions in data and endow model with causal reasoning ability in a two-stage process.
By using a fine-tuned unconditional Diffusion Probabilistic Model (DDPM) as the generative prior, we in-fill the masks defined as environmental parts.
Experiments conducted on five real-world ST benchmarks demonstrate that integrating the CaPaint concept allows models to achieve improvements ranging from 4.3% to 77.3%.
arXiv Detail & Related papers (2024-09-29T08:18:50Z) - Enhancing PM2.5 Data Imputation and Prediction in Air Quality Monitoring Networks Using a KNN-SINDy Hybrid Model [0.0]
Air pollution, particularly particulate matter (PM2.5), poses significant risks to public health and the environment.
This study explores the application of Sparse Identification of Dynamics (SINDy2.5) for imputing missing PM2.5 data by predicting, using training data from 2016, and comparing its performance with the established Soft Impute (SI) and K-Nearest Neighbors (KNN) methods.
arXiv Detail & Related papers (2024-09-18T02:08:17Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - A Framework for Scalable Ambient Air Pollution Concentration Estimation [0.0]
Ambient air pollution remains a critical issue in the United Kingdom, where data on air pollution concentrations form the foundation for interventions aimed at improving air quality.
We introduce a data-driven supervised machine learning model framework designed to address temporal and spatial data gaps by filling missing measurements.
This approach provides a comprehensive dataset for England throughout 2018 at a 1kmx1km hourly resolution.
arXiv Detail & Related papers (2024-01-16T18:03:07Z) - Graph Neural Networks for Pressure Estimation in Water Distribution
Systems [44.99833362998488]
Pressure and flow estimation in Water Distribution Networks (WDN) allows water management companies to optimize their control operations.
We combine physics-based modeling and Graph Neural Networks (GNN), a data-driven approach, to address the pressure estimation problem.
Our GNN-based model estimates the pressure of a large-scale WDN in The Netherlands with a MAE of 1.94mH$$O and a MAPE of 7%.
arXiv Detail & Related papers (2023-11-17T15:30:12Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Detecting Elevated Air Pollution Levels by Monitoring Web Search
Queries: Deep Learning-Based Time Series Forecasting [7.978612711536259]
Prior work relied on modeling pollutant concentrations collected from ground-based monitors and meteorological data for long-term forecasting.
This study aims to develop and validate models to nowcast the observed pollution levels using Web search data, which is publicly available in near real-time from major search engines.
We developed novel machine learning-based models using both traditional supervised classification methods and state-of-the-art deep learning methods to detect elevated air pollution levels at the US city level.
arXiv Detail & Related papers (2022-11-09T23:56:35Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
Remaining Useful Life (RUL) estimation is the problem of inferring how long a certain industrial asset can be expected to operate.
In this work, we consider Deep Gaussian Processes (DGPs) as possible solutions to the aforementioned limitations.
The performance of the algorithms is evaluated on the N-CMAPSS dataset from NASA for aircraft engines.
arXiv Detail & Related papers (2021-04-08T08:50:44Z) - A Novel Prediction Approach for Exploring PM2.5 Spatiotemporal
Propagation Based on Convolutional Recursive Neural Networks [7.131106953836335]
The prediction system of PM2.5 propagation provides more detailed and accurate information as an early warning system to reduce health impacts on the community.
This research was conducted by using dataset of air quality monitoring systems in Taiwan.
In general, the model is able to provide accurate predictive results by considering the bonds among measurement nodes in both spatially and temporally.
arXiv Detail & Related papers (2021-01-15T17:00:04Z) - A Novel Hybrid Framework for Hourly PM2.5 Concentration Forecasting
Using CEEMDAN and Deep Temporal Convolutional Neural Network [2.2175470459999636]
This study develops a novel hybrid forecasting model based on complete ensemble empirical mode decomposition with adaptive noise.
The forecasting accuracy of the proposed CEEMDAN-DeepTCN model is verified to be the highest when compared with the time series model, artificial neural network, and the popular deep learning models.
The new model has improved the capability to model the PM2.5-related factor data patterns, and can be used as a promising tool for forecasting PM2.5 concentrations.
arXiv Detail & Related papers (2020-12-07T15:22:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.