論文の概要: Channel-Aware Throughput Maximization for Cooperative Data Fusion in CAV
- arxiv url: http://arxiv.org/abs/2410.04320v1
- Date: Sun, 6 Oct 2024 00:43:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 08:30:03.545766
- Title: Channel-Aware Throughput Maximization for Cooperative Data Fusion in CAV
- Title(参考訳): CAVにおける協調データ融合のためのチャネル・アウェア・スループットの最大化
- Authors: Haonan An, Zhengru Fang, Yuang Zhang, Senkang Hu, Xianhao Chen, Guowen Xu, Yuguang Fang,
- Abstract要約: 接続型および自律型車両(CAV)は、認識範囲の拡大と知覚範囲の増大により、大きな注目を集めている。
盲点や障害物などの問題に対処するため、CAVは周囲の車両からのデータを集めるために車両間通信を採用している。
本稿では,適応データ圧縮のための自己教師付きオートエンコーダを活用した,CAVデータ融合を容易にするチャネル対応スループット手法を提案する。
- 参考スコア(独自算出の注目度): 17.703608985129026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Connected and autonomous vehicles (CAVs) have garnered significant attention due to their extended perception range and enhanced sensing coverage. To address challenges such as blind spots and obstructions, CAVs employ vehicle-to-vehicle (V2V) communications to aggregate sensory data from surrounding vehicles. However, cooperative perception is often constrained by the limitations of achievable network throughput and channel quality. In this paper, we propose a channel-aware throughput maximization approach to facilitate CAV data fusion, leveraging a self-supervised autoencoder for adaptive data compression. We formulate the problem as a mixed integer programming (MIP) model, which we decompose into two sub-problems to derive optimal data rate and compression ratio solutions under given link conditions. An autoencoder is then trained to minimize bitrate with the determined compression ratio, and a fine-tuning strategy is employed to further reduce spectrum resource consumption. Experimental evaluation on the OpenCOOD platform demonstrates the effectiveness of our proposed algorithm, showing more than 20.19\% improvement in network throughput and a 9.38\% increase in average precision (AP@IoU) compared to state-of-the-art methods, with an optimal latency of 19.99 ms.
- Abstract(参考訳): 接続型および自律型車両(CAV)は、認識範囲の拡大と知覚範囲の増大により、大きな注目を集めている。
盲点や障害物などの課題に対処するため、CAVは周囲の車両からのセンサデータを収集するために車両間通信(V2V)を採用している。
しかし、協調的な知覚は、達成可能なネットワークスループットとチャネル品質の制限によって制約されることが多い。
本稿では,適応データ圧縮に自己教師付きオートエンコーダを活用することで,CAVデータ融合を容易にするチャネル対応スループット最大化手法を提案する。
この問題を混合整数プログラミング(MIP)モデルとして定式化し、与えられたリンク条件下で最適なデータレートと圧縮比の解を導出するために2つのサブプロブレムに分解する。
オートエンコーダは、決定された圧縮比でビットレートを最小にするために訓練され、さらにスペクトルリソース消費を減らすために微調整戦略が用いられる。
OpenCOOD プラットフォーム上での実験的な評価により,提案アルゴリズムの有効性が示され,ネットワークスループットが 20.19 % 向上し,平均精度 (AP@IoU) が 9.38 % 向上した。
関連論文リスト
- Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Enhanced Cooperative Perception for Autonomous Vehicles Using Imperfect Communication [0.24466725954625887]
本稿では,制約通信下での協調知覚(CP)の最適化を実現するための新しい手法を提案する。
私たちのアプローチの核心は、視覚範囲を拡大するために、利用可能なフロント車両のリストから最高のヘルパーを募集することだ。
本研究は,協調知覚の全体的な性能向上における2段階最適化プロセスの有効性を実証するものである。
論文 参考訳(メタデータ) (2024-04-10T15:37:15Z) - SmartCooper: Vehicular Collaborative Perception with Adaptive Fusion and
Judger Mechanism [23.824400533836535]
通信最適化と判断機構を組み込んだ適応型協調認識フレームワークであるSmartCooperを紹介する。
以上の結果から,非ジュッジャー方式に比べて通信コストが23.10%大幅に削減された。
論文 参考訳(メタデータ) (2024-02-01T04:15:39Z) - Cooperative Perception with Learning-Based V2V communications [11.772899644895281]
本研究は,コミュニケーションチャネル障害に対する協調認識会計の性能を解析する。
中間特性のロバスト性を活用するために, 新たなレイトフュージョン方式を提案する。
協調によって生じるデータサイズを圧縮するために、畳み込みニューラルネットワークベースのオートエンコーダを採用する。
論文 参考訳(メタデータ) (2023-11-17T05:41:23Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Online V2X Scheduling for Raw-Level Cooperative Perception [21.099819062731463]
視界が単独の知性を制限すると、コネクテッドカーの協調的な認識が救助にやってくる。
本稿では,センサ共有スケジューリングのエネルギー最小化問題を定式化して生レベルの協調認識モデルを提案する。
本稿では,対数的性能損失を伴うオンライン学習に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-12T15:16:45Z) - Keypoints-Based Deep Feature Fusion for Cooperative Vehicle Detection of
Autonomous Driving [2.6543018470131283]
本稿では,FPV-RCNNと呼ばれる,効率的なキーポイントに基づく深い特徴融合フレームワークを提案する。
鳥眼視(BEV)キーポイントの核融合と比較すると、FPV-RCNNは検出精度を約14%向上させる。
また,提案手法はCPMのサイズを0.3KB以下に削減し,従来のBEV機能マップの約50倍の小型化を実現した。
論文 参考訳(メタデータ) (2021-09-23T19:41:02Z) - Federated Learning on the Road: Autonomous Controller Design for
Connected and Autonomous Vehicles [109.71532364079711]
CAV(コネクテッド・アンド・自律車両)の自律制御設計のための新しい統合学習(FL)フレームワークの提案
CAVの移動性、無線フェーディングチャネル、および不均衡で非独立で同一に分散されたデータを考慮に入れた新しい動的フェデレーション・プロキシ(DFP)アルゴリズムが提案されている。
最適制御器を用いてCAVがどの程度の速度で収束するかを同定するために,提案アルゴリズムに対して厳密な収束解析を行う。
論文 参考訳(メタデータ) (2021-02-05T19:57:47Z) - Optimizing Mixed Autonomy Traffic Flow With Decentralized Autonomous
Vehicles and Multi-Agent RL [63.52264764099532]
本研究では、完全分散制御方式を用いて、混合自律環境でのボトルネックのスループットを向上させる自動運転車の能力について検討する。
この問題にマルチエージェント強化アルゴリズムを適用し、5%の浸透速度で20%から40%の浸透速度で33%までのボトルネックスループットの大幅な改善が達成できることを実証した。
論文 参考訳(メタデータ) (2020-10-30T22:06:05Z) - DADA: Differentiable Automatic Data Augmentation [58.560309490774976]
コストを大幅に削減する微分可能自動データ拡張(DADA)を提案する。
CIFAR-10, CIFAR-100, SVHN, ImageNetのデータセットについて広範な実験を行った。
その結果,DADAは最先端技術よりも1桁以上高速であり,精度は極めて高いことがわかった。
論文 参考訳(メタデータ) (2020-03-08T13:23:14Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。