Channel-Aware Throughput Maximization for Cooperative Data Fusion in CAV
- URL: http://arxiv.org/abs/2410.04320v1
- Date: Sun, 6 Oct 2024 00:43:46 GMT
- Title: Channel-Aware Throughput Maximization for Cooperative Data Fusion in CAV
- Authors: Haonan An, Zhengru Fang, Yuang Zhang, Senkang Hu, Xianhao Chen, Guowen Xu, Yuguang Fang,
- Abstract summary: Connected and autonomous vehicles (CAVs) have garnered significant attention due to their extended perception range and enhanced sensing coverage.
To address challenges such as blind spots and obstructions, CAVs employ vehicle-to-vehicle communications to aggregate data from surrounding vehicles.
We propose a channel-aware throughput approach to facilitate CAV data fusion, leveraging a self-supervised autoencoder for adaptive data compression.
- Score: 17.703608985129026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Connected and autonomous vehicles (CAVs) have garnered significant attention due to their extended perception range and enhanced sensing coverage. To address challenges such as blind spots and obstructions, CAVs employ vehicle-to-vehicle (V2V) communications to aggregate sensory data from surrounding vehicles. However, cooperative perception is often constrained by the limitations of achievable network throughput and channel quality. In this paper, we propose a channel-aware throughput maximization approach to facilitate CAV data fusion, leveraging a self-supervised autoencoder for adaptive data compression. We formulate the problem as a mixed integer programming (MIP) model, which we decompose into two sub-problems to derive optimal data rate and compression ratio solutions under given link conditions. An autoencoder is then trained to minimize bitrate with the determined compression ratio, and a fine-tuning strategy is employed to further reduce spectrum resource consumption. Experimental evaluation on the OpenCOOD platform demonstrates the effectiveness of our proposed algorithm, showing more than 20.19\% improvement in network throughput and a 9.38\% increase in average precision (AP@IoU) compared to state-of-the-art methods, with an optimal latency of 19.99 ms.
Related papers
- Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Enhanced Cooperative Perception for Autonomous Vehicles Using Imperfect Communication [0.24466725954625887]
We propose a novel approach to realize an optimized Cooperative Perception (CP) under constrained communications.
At the core of our approach is recruiting the best helper from the available list of front vehicles to augment the visual range.
Our results demonstrate the efficacy of our two-step optimization process in improving the overall performance of cooperative perception.
arXiv Detail & Related papers (2024-04-10T15:37:15Z) - SmartCooper: Vehicular Collaborative Perception with Adaptive Fusion and
Judger Mechanism [23.824400533836535]
We introduce SmartCooper, an adaptive collaborative perception framework that incorporates communication optimization and a judger mechanism.
Our results demonstrate a substantial reduction in communication costs by 23.10% compared to the non-judger scheme.
arXiv Detail & Related papers (2024-02-01T04:15:39Z) - Cooperative Perception with Learning-Based V2V communications [11.772899644895281]
This work analyzes the performance of cooperative perception accounting for communications channel impairments.
A new late fusion scheme is proposed to leverage the robustness of intermediate features.
In order to compress the data size incurred by cooperation, a convolution neural network-based autoencoder is adopted.
arXiv Detail & Related papers (2023-11-17T05:41:23Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Online V2X Scheduling for Raw-Level Cooperative Perception [21.099819062731463]
Cooperative perception of connected vehicles comes to the rescue when the field of view restricts stand-alone intelligence.
We present a model of raw-level cooperative perception and formulate the energy minimization problem of sensor sharing scheduling.
We propose an online learning-based algorithm with logarithmic performance loss, achieving a decent trade-off between exploration and exploitation.
arXiv Detail & Related papers (2022-02-12T15:16:45Z) - Keypoints-Based Deep Feature Fusion for Cooperative Vehicle Detection of
Autonomous Driving [2.6543018470131283]
We propose an efficient keypoints-based deep feature fusion framework, called FPV-RCNN, for collective perception.
Compared to a bird's-eye view (BEV) keypoints feature fusion, FPV-RCNN achieves improved detection accuracy by about 14%.
Our method also significantly decreases the CPM size to less than 0.3KB, which is about 50 times smaller than the BEV feature map sharing used in previous works.
arXiv Detail & Related papers (2021-09-23T19:41:02Z) - Federated Learning on the Road: Autonomous Controller Design for
Connected and Autonomous Vehicles [109.71532364079711]
A new federated learning (FL) framework is proposed for designing the autonomous controller of connected and autonomous vehicles (CAVs)
A novel dynamic federated proximal (DFP) algorithm is proposed that accounts for the mobility of CAVs, the wireless fading channels, and the unbalanced and nonindependent and identically distributed data across CAVs.
A rigorous convergence analysis is performed for the proposed algorithm to identify how fast the CAVs converge to using the optimal controller.
arXiv Detail & Related papers (2021-02-05T19:57:47Z) - Optimizing Mixed Autonomy Traffic Flow With Decentralized Autonomous
Vehicles and Multi-Agent RL [63.52264764099532]
We study the ability of autonomous vehicles to improve the throughput of a bottleneck using a fully decentralized control scheme in a mixed autonomy setting.
We apply multi-agent reinforcement algorithms to this problem and demonstrate that significant improvements in bottleneck throughput, from 20% at a 5% penetration rate to 33% at a 40% penetration rate, can be achieved.
arXiv Detail & Related papers (2020-10-30T22:06:05Z) - DADA: Differentiable Automatic Data Augmentation [58.560309490774976]
We propose Differentiable Automatic Data Augmentation (DADA) which dramatically reduces the cost.
We conduct extensive experiments on CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets.
Results show our DADA is at least one order of magnitude faster than the state-of-the-art while achieving very comparable accuracy.
arXiv Detail & Related papers (2020-03-08T13:23:14Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.