Geometric Analysis of Reasoning Trajectories: A Phase Space Approach to Understanding Valid and Invalid Multi-Hop Reasoning in LLMs
- URL: http://arxiv.org/abs/2410.04415v3
- Date: Sat, 08 Mar 2025 13:54:10 GMT
- Title: Geometric Analysis of Reasoning Trajectories: A Phase Space Approach to Understanding Valid and Invalid Multi-Hop Reasoning in LLMs
- Authors: Javier Marin,
- Abstract summary: This paper proposes a novel approach to analyzing multi-hop reasoning in language models through Hamiltonian mechanics.<n>We map reasoning chains in embedding spaces to Hamiltonian systems, defining a function that balances reasoning progression (kinetic energy) against question relevance (potential energy)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel approach to analyzing multi-hop reasoning in language models through Hamiltonian mechanics. We map reasoning chains in embedding spaces to Hamiltonian systems, defining a function that balances reasoning progression (kinetic energy) against question relevance (potential energy). Analyzing reasoning chains from a question-answering dataset reveals that valid reasoning shows lower Hamiltonian energy values, representing an optimal trade-off between information gathering and targeted answering. While our framework offers complex visualization and quantification methods, the claimed ability to "steer" or "improve" reasoning algorithms requires more rigorous empirical validation, as the connection between physical systems and reasoning remains largely metaphorical. Nevertheless, our analysis reveals consistent geometric patterns distinguishing valid reasoning, suggesting this physics-inspired approach offers promising diagnostic tools and new perspectives on reasoning processes in large language models.
Related papers
- Weight-of-Thought Reasoning: Exploring Neural Network Weights for Enhanced LLM Reasoning [1.9797215742507548]
We introduce Weight-of-Thought (WoT) reasoning, a novel approach that examines neural network weights before inference to identify reasoning pathways.
WoT achieves superior performance compared to traditional methods, particularly for complex problems.
arXiv Detail & Related papers (2025-04-14T18:56:29Z) - Cognitive Activation and Chaotic Dynamics in Large Language Models: A Quasi-Lyapunov Analysis of Reasoning Mechanisms [6.375329734462518]
This paper proposes the "Cognitive Activation" theory, revealing the essence of Large Language Models' reasoning mechanisms.
Experiments show that the model's information accumulation follows a nonlinear exponential law, and the Multilayer Perceptron (MLP) accounts for a higher proportion in the final output.
This research provides a chaos theory framework for the interpretability of LLMs' reasoning and reveals potential pathways for balancing creativity and reliability in model design.
arXiv Detail & Related papers (2025-03-15T08:15:10Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.
We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.
We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - Distributional reasoning in LLMs: Parallel reasoning processes in multi-hop reasoning [8.609587510471943]
We introduce a novel and interpretable analysis of internal multi-hop reasoning processes in large language models.
We show that during inference, the middle layers of the network generate highly interpretable embeddings.
Our findings can help uncover the strategies that LLMs use to solve reasoning tasks, offering insights into the types of thought processes that can emerge from artificial intelligence.
arXiv Detail & Related papers (2024-06-19T21:36:40Z) - Learning Iterative Reasoning through Energy Diffusion [90.24765095498392]
We introduce iterative reasoning through energy diffusion (IRED), a novel framework for learning to reason for a variety of tasks.
IRED learns energy functions to represent the constraints between input conditions and desired outputs.
We show IRED outperforms existing methods in continuous-space reasoning, discrete-space reasoning, and planning tasks.
arXiv Detail & Related papers (2024-06-17T03:36:47Z) - Learning Hamiltonian neural Koopman operator and simultaneously sustaining and discovering conservation law [13.310284460452918]
We propose the Hamiltonian Neural Koopman Operator (HNKO), integrating the knowledge of mathematical physics in learning the Koopman operator.
We demonstrate the outperformance of the HNKO and its extension using a number of representative physical systems.
Our results suggest that feeding the prior knowledge of the underlying system and the mathematical theory appropriately to the learning framework can reinforce the capability of machine learning in solving physical problems.
arXiv Detail & Related papers (2024-06-04T09:42:34Z) - Counterfactual and Semifactual Explanations in Abstract Argumentation: Formal Foundations, Complexity and Computation [19.799266797193344]
Argumentation-based systems often lack explainability while supporting decision-making processes.
Counterfactual and semifactual explanations are interpretability techniques.
We show that counterfactual and semifactual queries can be encoded in weak-constrained Argumentation Framework.
arXiv Detail & Related papers (2024-05-07T07:27:27Z) - Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
We propose a novel conceptualization framework that forces models to perform conceptual reasoning on abstract questions.
We show that existing large language models fall short on conceptual reasoning, dropping 9% to 28% on various benchmarks.
We then discuss how models can improve since high-level abstract reasoning is key to unbiased and generalizable decision-making.
arXiv Detail & Related papers (2024-03-30T00:53:53Z) - Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation [110.71955853831707]
We view LMs as deriving new conclusions by aggregating indirect reasoning paths seen at pre-training time.
We formalize the reasoning paths as random walk paths on the knowledge/reasoning graphs.
Experiments and analysis on multiple KG and CoT datasets reveal the effect of training on random walk paths.
arXiv Detail & Related papers (2024-02-05T18:25:51Z) - Leveraging Structured Information for Explainable Multi-hop Question
Answering and Reasoning [14.219239732584368]
In this work, we investigate constructing and leveraging extracted semantic structures (graphs) for multi-hop question answering.
Empirical results and human evaluations show that our framework: generates more faithful reasoning chains and substantially improves the QA performance on two benchmark datasets.
arXiv Detail & Related papers (2023-11-07T05:32:39Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - Chaining Simultaneous Thoughts for Numerical Reasoning [92.2007997126144]
numerical reasoning over text should be an essential skill of AI systems.
Previous work focused on modeling the structures of equations, and has proposed various structured decoders.
We propose CANTOR, a numerical reasoner that models reasoning steps using a directed acyclic graph.
arXiv Detail & Related papers (2022-11-29T18:52:06Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
We propose a benchmark to investigate models' logical reasoning capabilities in complex real-life scenarios.
Based on the multi-hop chain of reasoning, the explanation form includes three main components.
We evaluate the current best models' performance on this new explanation form.
arXiv Detail & Related papers (2022-10-22T16:01:13Z) - Learning Iterative Reasoning through Energy Minimization [77.33859525900334]
We present a new framework for iterative reasoning with neural networks.
We train a neural network to parameterize an energy landscape over all outputs.
We implement each step of the iterative reasoning as an energy minimization step to find a minimal energy solution.
arXiv Detail & Related papers (2022-06-30T17:44:20Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
We introduce the methodology of Faithfulness-through-Counterfactuals.
It generates a counterfactual hypothesis based on the logical predicates expressed in the explanation.
It then evaluates if the model's prediction on the counterfactual is consistent with that expressed logic.
arXiv Detail & Related papers (2022-05-25T03:40:59Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamics endows neural networks with accurate long-term prediction, interpretability, and data-efficient learning.
We systematically survey recently proposed Hamiltonian neural network models, with a special emphasis on methodologies.
arXiv Detail & Related papers (2022-02-28T22:54:39Z) - From Philosophy to Interfaces: an Explanatory Method and a Tool Inspired
by Achinstein's Theory of Explanation [3.04585143845864]
We propose a new method for explanations in Artificial Intelligence (AI)
We show a new approach for the generation of interactive explanations based on a pipeline of AI algorithms.
We tested our hypothesis on a well-known XAI-powered credit approval system by IBM.
arXiv Detail & Related papers (2021-09-09T11:10:03Z) - Symplectic Learning for Hamiltonian Neural Networks [0.0]
Hamiltonian Neural Networks (HNNs) took a first step towards a unified "gray box" approach.
We exploit the symplectic structure of Hamiltonian systems with a different loss function.
We mathematically guarantee the existence of an exact Hamiltonian function which the HNN can learn.
arXiv Detail & Related papers (2021-06-22T13:33:12Z) - Dynamic Semantic Graph Construction and Reasoning for Explainable
Multi-hop Science Question Answering [50.546622625151926]
We propose a new framework to exploit more valid facts while obtaining explainability for multi-hop QA.
Our framework contains three new ideas: (a) tt AMR-SG, an AMR-based Semantic Graph, constructed by candidate fact AMRs to uncover any hop relations among question, answer and multiple facts, (b) a novel path-based fact analytics approach exploiting tt AMR-SG to extract active facts from a large fact pool to answer questions, and (c) a fact-level relation modeling leveraging graph convolution network (GCN) to guide the reasoning process.
arXiv Detail & Related papers (2021-05-25T09:14:55Z) - Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering [35.40919477319811]
We propose a novel knowledge-aware approach that equips pre-trained language models with a multi-hop relational reasoning module.
It performs multi-hop, multi-relational reasoning over subgraphs extracted from external knowledge graphs.
It unifies path-based reasoning methods and graph neural networks to achieve better interpretability and scalability.
arXiv Detail & Related papers (2020-05-01T23:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.