Weight-of-Thought Reasoning: Exploring Neural Network Weights for Enhanced LLM Reasoning
- URL: http://arxiv.org/abs/2504.10646v1
- Date: Mon, 14 Apr 2025 18:56:29 GMT
- Title: Weight-of-Thought Reasoning: Exploring Neural Network Weights for Enhanced LLM Reasoning
- Authors: Saif Punjwani, Larry Heck,
- Abstract summary: We introduce Weight-of-Thought (WoT) reasoning, a novel approach that examines neural network weights before inference to identify reasoning pathways.<n>WoT achieves superior performance compared to traditional methods, particularly for complex problems.
- Score: 1.9797215742507548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable reasoning capabilities when prompted with strategies such as Chain-of-Thought (CoT). However, these approaches focus on token-level output without considering internal weight dynamics. We introduce Weight-of-Thought (WoT) reasoning, a novel approach that examines neural network weights before inference to identify reasoning pathways. Unlike existing methods, WoT explores the weight space through graph-based message passing, multi-step reasoning processes, and attention mechanisms. Our implementation creates an interconnected graph of reasoning nodes. Experiments on diverse reasoning tasks (syllogistic, mathematical, algebraic, combinatorial, and geometric) demonstrate that WoT achieves superior performance compared to traditional methods, particularly for complex problems. This approach leads to both improved performance and greater interpretability of the reasoning process, offering a promising direction for enhancing LLM reasoning capabilities.
Related papers
- Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - Hypothesis-Driven Theory-of-Mind Reasoning for Large Language Models [76.6028674686018]
We introduce thought-tracing, an inference-time reasoning algorithm to trace the mental states of agents.
Our algorithm is modeled after the Bayesian theory-of-mind framework.
We evaluate thought-tracing on diverse theory-of-mind benchmarks, demonstrating significant performance improvements.
arXiv Detail & Related papers (2025-02-17T15:08:50Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.
We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.
We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Causal Reasoning in Large Language Models: A Knowledge Graph Approach [6.5344638992876085]
Large language models (LLMs) typically improve performance by either retrieving semantically similar information, or enhancing reasoning abilities through structured prompts like chain-of-thought.
This paper proposes a knowledge graph (KG)-based random-walk reasoning approach that leverages causal relationships.
arXiv Detail & Related papers (2024-10-15T13:24:44Z) - Geometric Analysis of Reasoning Trajectories: A Phase Space Approach to Understanding Valid and Invalid Multi-Hop Reasoning in LLMs [0.0]
This paper proposes a novel approach to analyzing multi-hop reasoning in language models through Hamiltonian mechanics.<n>We map reasoning chains in embedding spaces to Hamiltonian systems, defining a function that balances reasoning progression (kinetic energy) against question relevance (potential energy)
arXiv Detail & Related papers (2024-10-06T09:09:14Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
This work explores the potential and limitations of using graph-based synthetic reasoning data as training signals to enhance Large Language Models' reasoning capabilities.
Our experiments, conducted on two established natural language reasoning tasks, demonstrate that supervised fine-tuning with synthetic graph-based reasoning data effectively enhances LLMs' reasoning performance without compromising their effectiveness on other standard evaluation benchmarks.
arXiv Detail & Related papers (2024-09-19T03:39:09Z) - On the Diagram of Thought [12.304069891580658]
Current large language models (LLMs) demonstrate impressive capabilities but struggle with complex, multi-step reasoning tasks.<n>We introduce the Diagram of Thought (DoT) as a framework wherein a single auto-regressive LLM internally constructs and navigates a Directed Acyclic Graph (DAG)<n>We formalize the reasoning DAG as a diagram within a suitable topos and prove that the final step, aggregating validated information, corresponds semantically to computing the colimit of the relevant sub-diagram.
arXiv Detail & Related papers (2024-09-16T07:01:41Z) - Neural Probabilistic Logic Learning for Knowledge Graph Reasoning [10.473897846826956]
This paper aims to design a reasoning framework that achieves accurate reasoning on knowledge graphs.
We introduce a scoring module that effectively enhances the expressive power of embedding networks.
We improve the interpretability of the model by incorporating a Markov Logic Network based on variational inference.
arXiv Detail & Related papers (2024-07-04T07:45:46Z) - Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation [110.71955853831707]
We view LMs as deriving new conclusions by aggregating indirect reasoning paths seen at pre-training time.
We formalize the reasoning paths as random walk paths on the knowledge/reasoning graphs.
Experiments and analysis on multiple KG and CoT datasets reveal the effect of training on random walk paths.
arXiv Detail & Related papers (2024-02-05T18:25:51Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Neural Logic Reasoning [47.622957656745356]
We propose Logic-Integrated Neural Network (LINN) to integrate the power of deep learning and logic reasoning.
LINN learns basic logical operations such as AND, OR, NOT as neural modules, and conducts propositional logical reasoning through the network for inference.
Experiments show that LINN significantly outperforms state-of-the-art recommendation models in Top-K recommendation.
arXiv Detail & Related papers (2020-08-20T14:53:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.