S-Agents: Self-organizing Agents in Open-ended Environments
- URL: http://arxiv.org/abs/2402.04578v4
- Date: Fri, 13 Sep 2024 19:40:12 GMT
- Title: S-Agents: Self-organizing Agents in Open-ended Environments
- Authors: Jiaqi Chen, Yuxian Jiang, Jiachen Lu, Li Zhang,
- Abstract summary: We introduce a self-organizing agent system (S-Agents) with a "tree of agents" structure for dynamic workflow.
This structure can autonomously coordinate a group of agents, efficiently addressing the challenges of open and dynamic environments.
Our experiments demonstrate that S-Agents proficiently execute collaborative building tasks and resource collection in the Minecraft environment.
- Score: 15.700383873385892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging large language models (LLMs), autonomous agents have significantly improved, gaining the ability to handle a variety of tasks. In open-ended settings, optimizing collaboration for efficiency and effectiveness demands flexible adjustments. Despite this, current research mainly emphasizes fixed, task-oriented workflows and overlooks agent-centric organizational structures. Drawing inspiration from human organizational behavior, we introduce a self-organizing agent system (S-Agents) with a "tree of agents" structure for dynamic workflow, an "hourglass agent architecture" for balancing information priorities, and a "non-obstructive collaboration" method to allow asynchronous task execution among agents. This structure can autonomously coordinate a group of agents, efficiently addressing the challenges of open and dynamic environments without human intervention. Our experiments demonstrate that S-Agents proficiently execute collaborative building tasks and resource collection in the Minecraft environment, validating their effectiveness.
Related papers
- MorphAgent: Empowering Agents through Self-Evolving Profiles and Decentralized Collaboration [8.078098082305575]
This paper introduces MorphAgent, a novel framework for decentralized multi-agent collaboration.
MorphAgent employs self-evolving agent profiles, optimized through three key metrics.
Our experimental results show that MorphAgent outperforms traditional static-role MAS in terms of task performance and adaptability to changing requirements.
arXiv Detail & Related papers (2024-10-19T09:10:49Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel Agent is a self-evolving framework inspired by the G"odel machine.
G"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
arXiv Detail & Related papers (2024-10-06T10:49:40Z) - GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
This paper explores collaborative AI systems that use to enhance performance to integrate models, data sources, and pipelines to solve complex and diverse tasks.
We introduce GenAgent, an LLM-based framework that automatically generates complex, offering greater flexibility and scalability compared to monolithic models.
The results demonstrate that GenAgent outperforms baseline approaches in both run-level and task-level evaluations.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
Tool learning empowers large language models (LLMs) as agents to use external tools and extend their utility.
We propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately.
Our experiments on three datasets show that the LLMs, when equipped with ConAgents, outperform baselines with substantial improvement.
arXiv Detail & Related papers (2024-03-05T15:08:16Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agent is designed to enhance the capabilities of Large Language Models (LLMs) in task-solving.
Our framework includes two novel modules: hierarchical Objects and Key Results generation and multi-level evaluation.
arXiv Detail & Related papers (2023-11-28T06:16:30Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.