論文の概要: Optimising for the Unknown: Domain Alignment for Cephalometric Landmark Detection
- arxiv url: http://arxiv.org/abs/2410.04445v1
- Date: Sun, 6 Oct 2024 10:54:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 07:25:54.536677
- Title: Optimising for the Unknown: Domain Alignment for Cephalometric Landmark Detection
- Title(参考訳): 未知領域の最適化:セファロメトリックランドマーク検出のためのドメインアライメント
- Authors: Julian Wyatt, Irina Voiculescu,
- Abstract要約: 機械学習モデルは、ヒートマップで表されるランドマークの確率軌跡を予測する。
本研究は,局所顔抽出モジュールとX線アーチファクト拡張手法を用いた領域アライメント戦略を提案する。
その結果,MREが1.186mm,2mm SDRが82.04%,オンライン検証リーダボードが3位となった。
- 参考スコア(独自算出の注目度): 6.276791657895805
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cephalometric Landmark Detection is the process of identifying key areas for cephalometry. Each landmark is a single GT point labelled by a clinician. A machine learning model predicts the probability locus of a landmark represented by a heatmap. This work, for the 2024 CL-Detection MICCAI Challenge, proposes a domain alignment strategy with a regional facial extraction module and an X-ray artefact augmentation procedure. The challenge ranks our method's results as the best in MRE of 1.186mm and third in the 2mm SDR of 82.04% on the online validation leaderboard. The code is available at https://github.com/Julian-Wyatt/OptimisingfortheUnknown.
- Abstract(参考訳): ケパロメトリランドマーク検出(Cephalometric Landmark Detection)は、脳波計測のための重要な領域を特定するプロセスである。
それぞれのランドマークは、臨床医によってラベル付けされた単一のGTポイントである。
機械学習モデルは、ヒートマップで表されるランドマークの確率軌跡を予測する。
この研究は、2024年のCL-Detection MICCAI Challengeのために、局所的な顔抽出モジュールとX線アーチファクト拡張手順によるドメインアライメント戦略を提案する。
この課題は、我々の手法の結果をMREの1.186mm、オンライン検証のリーダーボードの2mm SDRの82.04%でベストと位置づけている。
コードはhttps://github.com/Julian-Wyatt/OptimisingfortheUnknownで公開されている。
関連論文リスト
- Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challengeは、23の臨床的に関連する大動脈枝と領域に注釈付き100 CTA巻の最初のデータセットを導入した。
本稿では,トップパフォーマンスアルゴリズムの課題設計,データセットの詳細,評価指標,詳細な分析について述べる。
論文 参考訳(メタデータ) (2025-02-07T21:09:05Z) - Deep Learning Techniques for Automatic Lateral X-ray Cephalometric Landmark Detection: Is the Problem Solved? [12.422216286751073]
ケパロメトリランドマーク検出(Cephalometric Landmark Detection, CCL-Detection)データセットは,脳波ランドマーク検出のための最大かつ包括的なデータセットである。
本稿では,最先端のディープラーニング手法が脳波のランドマーク検出にどの程度役立つかを測定する。
論文 参考訳(メタデータ) (2024-09-24T08:03:13Z) - Salt & Pepper Heatmaps: Diffusion-informed Landmark Detection Strategy [6.276791657895805]
解剖学的ランドマーク検出(Anatomical Landmark Detection)は、臨床測定のための画像の重要な領域を特定するプロセスである。
機械学習モデルは、ヒートマップで表される確率領域としてランドマークの軌跡を予測する。
我々は,自動解剖学的ランドマーク検出を高精度な生成モデルタスクとして再構成し,数ドットのヒートマップを生成する。
論文 参考訳(メタデータ) (2024-07-12T11:50:39Z) - Multi-Resolution Fusion for Fully Automatic Cephalometric Landmark
Detection [1.9580473532948401]
側頭蓋X線像のセファロメトリーによるランドマーク検出は,特定の歯科疾患の診断において重要な役割を担っている。
広汎なデータ観測と定量的解析により,異なる受容領域の視覚的特徴が様々なランドマークの検出精度に異なる影響があることが判明した。
本手法は, 側方X線画像2023におけるケパロメトリランドマーク検出において実装され, 最終試験段階における平均放射誤差 1.62mm, 後続検出率 2.0mm, 74.18%の平均放射誤差 (MRE) を達成した。
論文 参考訳(メタデータ) (2023-10-04T14:42:45Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
本稿では,"プレーン"特性を維持できる改良型DETR検出器を提案する。
特定の局所性制約を伴わずに、単一スケールの機能マップとグローバルなクロスアテンション計算を使用する。
マルチスケールな特徴マップと局所性制約の欠如を補うために,2つの単純な技術が平易な設計において驚くほど効果的であることを示す。
論文 参考訳(メタデータ) (2023-08-03T17:59:04Z) - Detect Any Deepfakes: Segment Anything Meets Face Forgery Detection and
Localization [30.317619885984005]
本稿では,視覚的セグメンテーション基盤モデル,すなわちセグメンテーションモデル(SAM)をフォージェリ検出とローカライゼーションの対面に導入する。
SAMに基づいて,Multiscale Adapterを用いたDADFフレームワークを提案する。
提案するフレームワークは、エンドツーエンドのフォージェリーローカライゼーションと検出最適化をシームレスに統合する。
論文 参考訳(メタデータ) (2023-06-29T16:25:04Z) - Precise Facial Landmark Detection by Reference Heatmap Transformer [52.417964103227696]
より正確に顔のランドマークを検出するための参照ヒートマップ変換器(RHT)を提案する。
評価実験の結果,提案手法は文献における最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-03-14T12:26:48Z) - Oriented R-CNN for Object Detection [61.78746189807462]
本研究では、オブジェクト指向R-CNNと呼ばれる、効果的でシンプルなオブジェクト指向オブジェクト検出フレームワークを提案する。
第1段階では,高品質な指向型提案をほぼ無償で直接生成する指向型領域提案ネットワーク(指向RPN)を提案する。
第2段階は、R-CNNヘッダーで、興味のある領域(オブジェクト指向のRoI)を精製し、認識する。
論文 参考訳(メタデータ) (2021-08-12T12:47:43Z) - Structure-Aware Long Short-Term Memory Network for 3D Cephalometric
Landmark Detection [37.031819721889676]
本研究では,3次元ランドマーク検出のための構造対応長短期記憶フレームワーク(SA-LSTM)を提案する。
SA-LSTMは、まず、ダウンサンプリングCBCTボリューム上の熱マップ回帰によって粗いランドマークを見つける。
その後、高解像度の収穫パッチを使用して、注意深いオフセット回帰によってランドマークを徐々に洗練する。
実験の結果,提案手法は効率と精度で最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-21T06:35:52Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - Attentive One-Dimensional Heatmap Regression for Facial Landmark
Detection and Tracking [73.35078496883125]
顔のランドマークの局所化のための新しい1次元熱マップ回帰法を提案する。
まず、x座標とy座標の辺分布を表すために、1次元熱マップの2つの群を予測する。
第2に、x と y 座標に存在する固有の空間パターンをモデル化するコアテンション機構が採用されている。
第3に、1次元熱マップ構造に基づいて、画像上のランドマーク検出のための空間パターンを検出する顔ランドマーク検出器を提案する。
論文 参考訳(メタデータ) (2020-04-05T06:51:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。