論文の概要: Two-Steps Neural Networks for an Automated Cerebrovascular Landmark Detection
- arxiv url: http://arxiv.org/abs/2507.02349v1
- Date: Thu, 03 Jul 2025 06:23:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-04 15:37:15.770556
- Title: Two-Steps Neural Networks for an Automated Cerebrovascular Landmark Detection
- Title(参考訳): 自動脳血管ランドマーク検出のための2ステップニューラルネットワーク
- Authors: Rafic Nader, Vincent L'Allinec, Romain Bourcier, Florent Autrusseau,
- Abstract要約: 神経節内大動脈瘤(ICA)は、通常ウィリス円(CoW)の特定の部分で発生する
2ステップのニューラルネットワークプロセスを用いて,CoW分岐に対する完全自動ランドマーク検出手法を提案する。
- 参考スコア(独自算出の注目度): 0.8749675983608172
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Intracranial aneurysms (ICA) commonly occur in specific segments of the Circle of Willis (CoW), primarily, onto thirteen major arterial bifurcations. An accurate detection of these critical landmarks is necessary for a prompt and efficient diagnosis. We introduce a fully automated landmark detection approach for CoW bifurcations using a two-step neural networks process. Initially, an object detection network identifies regions of interest (ROIs) proximal to the landmark locations. Subsequently, a modified U-Net with deep supervision is exploited to accurately locate the bifurcations. This two-step method reduces various problems, such as the missed detections caused by two landmarks being close to each other and having similar visual characteristics, especially when processing the complete MRA Time-of-Flight (TOF). Additionally, it accounts for the anatomical variability of the CoW, which affects the number of detectable landmarks per scan. We assessed the effectiveness of our approach using two cerebral MRA datasets: our In-House dataset which had varying numbers of landmarks, and a public dataset with standardized landmark configuration. Our experimental results demonstrate that our method achieves the highest level of performance on a bifurcation detection task.
- Abstract(参考訳): 頭蓋内動脈瘤(ICA)は、主に13大動脈分岐部にあるウィリス環(CoW)の特定の部分で発生する。
迅速かつ効率的な診断には、これらの重要なランドマークの正確な検出が必要である。
2ステップのニューラルネットワークプロセスを用いて,CoW分岐に対する完全自動ランドマーク検出手法を提案する。
当初、オブジェクト検出ネットワークはランドマークに近縁な関心領域(ROI)を特定する。
その後、深い監視を施した修正されたU-Netを使用して、分岐を正確に特定する。
この2段階法は、2つのランドマークが互いに近接し、特に完全なMRAタイム・オブ・フライ(TOF)を処理する場合の視覚的特徴が類似していることによる発見の欠如など、様々な問題を低減させる。
さらに、CoWの解剖学的変動も考慮されており、スキャン毎に検出可能なランドマークの数に影響を与える。
提案手法の有効性を2つの大脳MRAデータセットを用いて評価した。
実験結果から,分岐検出タスクにおいて,本手法が最も高い性能が得られることが示された。
関連論文リスト
- Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - DualAttNet: Synergistic Fusion of Image-level and Fine-Grained Disease
Attention for Multi-Label Lesion Detection in Chest X-rays [1.3367903535457364]
胸部X線写真におけるDualAttNet(DualAttNet)というマルチラベル病変検出のための二重注意制御モジュールを提案する。
画像レベルの注意ブロックと微細な疾患注意アルゴリズムに基づいて、グローバルおよびローカルな病変分類情報を効率的に融合する。
論文 参考訳(メタデータ) (2023-06-23T23:19:27Z) - Landmark Tracking in Liver US images Using Cascade Convolutional Neural
Networks with Long Short-Term Memory [9.49563286905127]
本研究では,超音波(US)画像誘導放射線治療のための深層学習に基づく追跡手法を提案する。
提案したモデルは、MICCAI(Medicical Image Computing and Computer Assisted Interventions) 2015の課題で使用される、米国における肝追跡データセットでテストされた。
論文 参考訳(メタデータ) (2022-09-14T22:01:20Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - Feature Aggregation and Refinement Network for 2D AnatomicalLandmark
Detection [0.0]
本稿では,解剖学的ランドマークの自動検出のための,特徴集約・改善ネットワーク(FARNet)を提案する。
我々のネットワークは3つの公開解剖学的ランドマーク検出データセットで評価されている。
論文 参考訳(メタデータ) (2021-11-01T02:16:13Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
TS-MDLの最初の段階では、mphiMeshSegNetは0.953pm0.076$で平均Dice類似係数(DSC)に達した。
PointNet-Reg は平均絶対誤差 (MAE) が 0.623pm0.718, mm$ であり、ランドマーク検出の他のネットワークよりも優れている。
論文 参考訳(メタデータ) (2021-09-24T13:00:26Z) - Learn Fine-grained Adaptive Loss for Multiple Anatomical Landmark
Detection in Medical Images [15.7026400415269]
本稿ではランドマーク検出のための新しい学習学習フレームワークを提案する。
提案手法は汎用的であり,解剖学的ランドマーク検出の効率向上の可能性を示す。
論文 参考訳(メタデータ) (2021-05-19T13:39:18Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z) - Volumetric landmark detection with a multi-scale shift equivariant
neural network [16.114319747246334]
本稿では,3次元画像における高速かつメモリ効率の高いランドマーク検出を実現するマルチスケールのエンドツーエンドディープラーニング手法を提案する。
今回我々は,263個のCT上における頸動脈分岐検出法について検討し,平均ユークリッド距離2.81mmで最先端の精度を実現した。
論文 参考訳(メタデータ) (2020-03-03T17:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。