Few-shot learning with improved local representations via bias rectify
module
- URL: http://arxiv.org/abs/2111.00754v1
- Date: Mon, 1 Nov 2021 08:08:00 GMT
- Title: Few-shot learning with improved local representations via bias rectify
module
- Authors: Chao Dong, Qi Ye, Wenchao Meng, Kaixiang Yang
- Abstract summary: We propose a Deep Bias Rectify Network (DBRN) to fully exploit the spatial information that exists in the structure of the feature representations.
bias rectify module is able to focus on the features that are more discriminative for classification by given different weights.
To make full use of the training data, we design a prototype augment mechanism that can make the prototypes generated from the support set to be more representative.
- Score: 13.230636224045137
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent approaches based on metric learning have achieved great progress in
few-shot learning. However, most of them are limited to image-level
representation manners, which fail to properly deal with the intra-class
variations and spatial knowledge and thus produce undesirable performance. In
this paper we propose a Deep Bias Rectify Network (DBRN) to fully exploit the
spatial information that exists in the structure of the feature
representations. We first employ a bias rectify module to alleviate the adverse
impact caused by the intra-class variations. bias rectify module is able to
focus on the features that are more discriminative for classification by given
different weights. To make full use of the training data, we design a prototype
augment mechanism that can make the prototypes generated from the support set
to be more representative. To validate the effectiveness of our method, we
conducted extensive experiments on various popular few-shot classification
benchmarks and our methods can outperform state-of-the-art methods.
Related papers
- Adjusting Pretrained Backbones for Performativity [34.390793811659556]
We propose a novel technique to adjust pretrained backbones for performativity in a modular way.
We show how it leads to smaller loss along the retraining trajectory and enables us to effectively select among candidate models to anticipate performance degradations.
arXiv Detail & Related papers (2024-10-06T14:41:13Z) - FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning [21.693779973263172]
In this paper, we introduce a fine-tuning approach termed Feature Discrimination Alignment (FD-Align)
Our method aims to bolster the model's generalizability by preserving the consistency of spurious features.
Once fine-tuned, the model can seamlessly integrate with existing methods, leading to performance improvements.
arXiv Detail & Related papers (2023-10-23T17:12:01Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
We propose a new framework for learning molecular representations that exhibit invariance and robustness against distribution shifts.
Our model achieves stronger generalization against state-of-the-art baselines in the presence of various distribution shifts.
arXiv Detail & Related papers (2023-10-22T04:06:44Z) - Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach [90.77858044524544]
We reformulate the recognition probabilities through included angles without re-balancing the classifier weights.
Inspired by the performance improvement of the predictive form reformulation, we explore the different properties of this angular prediction.
Our method is able to obtain the best performance among peer methods without pretraining on CIFAR10/100-LT and ImageNet-LT.
arXiv Detail & Related papers (2022-12-03T07:52:48Z) - Bi-directional Feature Reconstruction Network for Fine-Grained Few-Shot
Image Classification [61.411869453639845]
We introduce a bi-reconstruction mechanism that can simultaneously accommodate for inter-class and intra-class variations.
This design effectively helps the model to explore more subtle and discriminative features.
Experimental results on three widely used fine-grained image classification datasets consistently show considerable improvements.
arXiv Detail & Related papers (2022-11-30T16:55:14Z) - Constructing Balance from Imbalance for Long-tailed Image Recognition [50.6210415377178]
The imbalance between majority (head) classes and minority (tail) classes severely skews the data-driven deep neural networks.
Previous methods tackle with data imbalance from the viewpoints of data distribution, feature space, and model design.
We propose a concise paradigm by progressively adjusting label space and dividing the head classes and tail classes.
Our proposed model also provides a feature evaluation method and paves the way for long-tailed feature learning.
arXiv Detail & Related papers (2022-08-04T10:22:24Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
Few-shot classification is a challenging problem that aims to learn a model that can adapt to unseen classes given a few labeled samples.
Recent approaches pre-train a feature extractor, and then fine-tune for episodic meta-learning.
We propose a strategy to cross-attend and re-weight discriminative features for few-shot classification.
arXiv Detail & Related papers (2022-03-25T06:14:51Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - Cross-Domain Few-Shot Classification via Adversarial Task Augmentation [16.112554109446204]
Few-shot classification aims to recognize unseen classes with few labeled samples from each class.
Many meta-learning models for few-shot classification elaborately design various task-shared inductive bias (meta-knowledge) to solve such tasks.
In this work, we aim to improve the robustness of the inductive bias through task augmentation.
arXiv Detail & Related papers (2021-04-29T14:51:53Z) - ReMP: Rectified Metric Propagation for Few-Shot Learning [67.96021109377809]
A rectified metric space is learned to maintain the metric consistency from training to testing.
Numerous analyses indicate that a simple modification of the objective can yield substantial performance gains.
The proposed ReMP is effective and efficient, and outperforms the state of the arts on various standard few-shot learning datasets.
arXiv Detail & Related papers (2020-12-02T00:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.