Learning De-Biased Representations for Remote-Sensing Imagery
- URL: http://arxiv.org/abs/2410.04546v1
- Date: Sun, 6 Oct 2024 16:47:30 GMT
- Title: Learning De-Biased Representations for Remote-Sensing Imagery
- Authors: Zichen Tian, Zhaozheng Chen, Qianru Sun,
- Abstract summary: Remote sensing (RS) imagery requires specialized satellites to collect and be difficult to annotate.
Due to data scarcity, training any large-scale RS models from scratch is unrealistic.
We propose debLoRA, a generic training approach that works with any LoRA variants to yield debiased features.
- Score: 27.218010145001312
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Remote sensing (RS) imagery, requiring specialized satellites to collect and being difficult to annotate, suffers from data scarcity and class imbalance in certain spectrums. Due to data scarcity, training any large-scale RS models from scratch is unrealistic, and the alternative is to transfer pre-trained models by fine-tuning or a more data-efficient method LoRA. Due to class imbalance, transferred models exhibit strong bias, where features of the major class dominate over those of the minor class. In this paper, we propose debLoRA, a generic training approach that works with any LoRA variants to yield debiased features. It is an unsupervised learning approach that can diversify minor class features based on the shared attributes with major classes, where the attributes are obtained by a simple step of clustering. To evaluate it, we conduct extensive experiments in two transfer learning scenarios in the RS domain: from natural to optical RS images, and from optical RS to multi-spectrum RS images. We perform object classification and oriented object detection tasks on the optical RS dataset DOTA and the SAR dataset FUSRS. Results show that our debLoRA consistently surpasses prior arts across these RS adaptation settings, yielding up to 3.3 and 4.7 percentage points gains on the tail classes for natural to optical RS and optical RS to multi-spectrum RS adaptations, respectively, while preserving the performance on head classes, substantiating its efficacy and adaptability.
Related papers
- Enhanced Super-Resolution Training via Mimicked Alignment for Real-World Scenes [51.92255321684027]
We propose a novel plug-and-play module designed to mitigate misalignment issues by aligning LR inputs with HR images during training.
Specifically, our approach involves mimicking a novel LR sample that aligns with HR while preserving the characteristics of the original LR samples.
We comprehensively evaluate our method on synthetic and real-world datasets, demonstrating its effectiveness across a spectrum of SR models.
arXiv Detail & Related papers (2024-10-07T18:18:54Z) - RS-NeRF: Neural Radiance Fields from Rolling Shutter Images [30.719764073204423]
We present RS-NeRF, a method designed to synthesize normal images from novel views using input with RS distortions.
This involves a physical model that replicates the image formation process under RS conditions.
We further address the inherent shortcomings of the basic RS-NeRF model by delving into the RS characteristics and developing algorithms to enhance its functionality.
arXiv Detail & Related papers (2024-07-14T16:27:11Z) - OpticalRS-4M: Scaling Efficient Masked Autoencoder Learning on Large Remote Sensing Dataset [66.15872913664407]
We present a new pre-training pipeline for RS models, featuring the creation of a large-scale RS dataset and an efficient MIM approach.
We curated a high-quality dataset named OpticalRS-4M by collecting publicly available RS datasets and processing them through exclusion, slicing, and deduplication.
Experiments demonstrate that OpticalRS-4M significantly improves classification, detection, and segmentation performance, while SelectiveMAE increases training efficiency over 2 times.
arXiv Detail & Related papers (2024-06-17T15:41:57Z) - Soft Random Sampling: A Theoretical and Empirical Analysis [59.719035355483875]
Soft random sampling (SRS) is a simple yet effective approach for efficient deep neural networks when dealing with massive data.
It selects a uniformly speed at random with replacement from each data set in each epoch.
It is shown to be a powerful and competitive strategy with significant and competitive performance on real-world industrial scale.
arXiv Detail & Related papers (2023-11-21T17:03:21Z) - Class Anchor Margin Loss for Content-Based Image Retrieval [97.81742911657497]
We propose a novel repeller-attractor loss that falls in the metric learning paradigm, yet directly optimize for the L2 metric without the need of generating pairs.
We evaluate the proposed objective in the context of few-shot and full-set training on the CBIR task, by using both convolutional and transformer architectures.
arXiv Detail & Related papers (2023-06-01T12:53:10Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - Self-Supervised Learning for Invariant Representations from
Multi-Spectral and SAR Images [5.994412766684843]
Self-Supervised learning (SSL) has become the new state-of-art in several domain classification and segmentation tasks.
This work proposes RSDnet, which applies the distillation network (BYOL) in the remote sensing (RS) domain.
arXiv Detail & Related papers (2022-05-04T13:16:48Z) - Learning Adaptive Warping for Real-World Rolling Shutter Correction [52.45689075940234]
This paper proposes the first real-world rolling shutter (RS) correction dataset, BS-RSC, and a corresponding model to correct the RS frames in a distorted video.
Mobile devices in the consumer market with CMOS-based sensors for video capture often result in rolling shutter effects when relative movements occur during the video acquisition process.
arXiv Detail & Related papers (2022-04-29T05:13:50Z) - Remote Sensing Image Scene Classification with Self-Supervised Paradigm
under Limited Labeled Samples [11.025191332244919]
We introduce new self-supervised learning (SSL) mechanism to obtain the high-performance pre-training model for RSIs scene classification from large unlabeled data.
Experiments on three commonly used RSIs scene classification datasets demonstrated that this new learning paradigm outperforms the traditional dominant ImageNet pre-trained model.
The insights distilled from our studies can help to foster the development of SSL in the remote sensing community.
arXiv Detail & Related papers (2020-10-02T09:27:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.