Enhanced Super-Resolution Training via Mimicked Alignment for Real-World Scenes
- URL: http://arxiv.org/abs/2410.05410v1
- Date: Mon, 7 Oct 2024 18:18:54 GMT
- Title: Enhanced Super-Resolution Training via Mimicked Alignment for Real-World Scenes
- Authors: Omar Elezabi, Zongwei Wu, Radu Timofte,
- Abstract summary: We propose a novel plug-and-play module designed to mitigate misalignment issues by aligning LR inputs with HR images during training.
Specifically, our approach involves mimicking a novel LR sample that aligns with HR while preserving the characteristics of the original LR samples.
We comprehensively evaluate our method on synthetic and real-world datasets, demonstrating its effectiveness across a spectrum of SR models.
- Score: 51.92255321684027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image super-resolution methods have made significant strides with deep learning techniques and ample training data. However, they face challenges due to inherent misalignment between low-resolution (LR) and high-resolution (HR) pairs in real-world datasets. In this study, we propose a novel plug-and-play module designed to mitigate these misalignment issues by aligning LR inputs with HR images during training. Specifically, our approach involves mimicking a novel LR sample that aligns with HR while preserving the degradation characteristics of the original LR samples. This module seamlessly integrates with any SR model, enhancing robustness against misalignment. Importantly, it can be easily removed during inference, therefore without introducing any parameters on the conventional SR models. We comprehensively evaluate our method on synthetic and real-world datasets, demonstrating its effectiveness across a spectrum of SR models, including traditional CNNs and state-of-the-art Transformers. The source codes will be publicly made available at https://github.com/omarAlezaby/Mimicked_Ali .
Related papers
- Pairwise Distance Distillation for Unsupervised Real-World Image Super-Resolution [38.79439380482431]
Real-world super-resolution (RWSR) faces unknown degradations in the low-resolution inputs, all the while lacking paired training data.
Existing methods approach this problem by learning blind general models through complex synthetic augmentations on training inputs.
We introduce a novel pairwise distance distillation framework to address the unsupervised RWSR for a targeted real-world degradation.
arXiv Detail & Related papers (2024-07-10T01:46:40Z) - Towards Realistic Data Generation for Real-World Super-Resolution [58.88039242455039]
RealDGen is an unsupervised learning data generation framework designed for real-world super-resolution.
We develop content and degradation extraction strategies, which are integrated into a novel content-degradation decoupled diffusion model.
Experiments demonstrate that RealDGen excels in generating large-scale, high-quality paired data that mirrors real-world degradations.
arXiv Detail & Related papers (2024-06-11T13:34:57Z) - Low-Res Leads the Way: Improving Generalization for Super-Resolution by
Self-Supervised Learning [45.13580581290495]
This work introduces a novel "Low-Res Leads the Way" (LWay) training framework to enhance the adaptability of SR models to real-world images.
Our approach utilizes a low-resolution (LR) reconstruction network to extract degradation embeddings from LR images, merging them with super-resolved outputs for LR reconstruction.
Our training regime is universally compatible, requiring no network architecture modifications, making it a practical solution for real-world SR applications.
arXiv Detail & Related papers (2024-03-05T02:29:18Z) - Learning Many-to-Many Mapping for Unpaired Real-World Image
Super-resolution and Downscaling [60.80788144261183]
We propose an image downscaling and SR model dubbed as SDFlow, which simultaneously learns a bidirectional many-to-many mapping between real-world LR and HR images unsupervisedly.
Experimental results on real-world image SR datasets indicate that SDFlow can generate diverse realistic LR and SR images both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-10-08T01:48:34Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
We propose a learnable adaptive sinusoidal nonlinearities incorporated in LR and SR models by directly learn degradation distributions.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
arXiv Detail & Related papers (2022-10-19T09:23:37Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z) - Learning to Zoom-in via Learning to Zoom-out: Real-world
Super-resolution by Generating and Adapting Degradation [91.40265983636839]
We propose a framework to learn SR from an arbitrary set of unpaired LR and HR images.
We minimize the discrepancy between the generated data and real data while learning a degradation adaptive SR network.
The proposed unpaired method achieves state-of-the-art SR results on real-world images, even in the datasets that favor the paired-learning methods more.
arXiv Detail & Related papers (2020-01-08T05:17:02Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.