論文の概要: Is What You Ask For What You Get? Investigating Concept Associations in Text-to-Image Models
- arxiv url: http://arxiv.org/abs/2410.04634v1
- Date: Sun, 6 Oct 2024 21:42:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 06:26:32.333375
- Title: Is What You Ask For What You Get? Investigating Concept Associations in Text-to-Image Models
- Title(参考訳): 何が欲しいのか? テキストと画像のモデルにおけるコンセプトアソシエーションの調査
- Authors: Salma Abdel Magid, Weiwei Pan, Simon Warchol, Grace Guo, Junsik Kim, Mahia Rahman, Hanspeter Pfister,
- Abstract要約: キャラクタリゼーションによって、モデルやプロンプトデータセットの監査にフレームワークを使用することができます。
本研究では,オープンソースインタラクティブな可視化ツールであるConcept2Conceptを実装した。
- 参考スコア(独自算出の注目度): 24.851041038347784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-image (T2I) models are increasingly used in impactful real-life applications. As such, there is a growing need to audit these models to ensure that they generate desirable, task-appropriate images. However, systematically inspecting the associations between prompts and generated content in a human-understandable way remains challenging. To address this, we propose \emph{Concept2Concept}, a framework where we characterize conditional distributions of vision language models using interpretable concepts and metrics that can be defined in terms of these concepts. This characterization allows us to use our framework to audit models and prompt-datasets. To demonstrate, we investigate several case studies of conditional distributions of prompts, such as user defined distributions or empirical, real world distributions. Lastly, we implement Concept2Concept as an open-source interactive visualization tool facilitating use by non-technical end-users. Warning: This paper contains discussions of harmful content, including CSAM and NSFW material, which may be disturbing to some readers.
- Abstract(参考訳): テキスト・ツー・イメージ(T2I)モデルは、実生活に影響を及ぼすアプリケーションにますます使われている。
そのため、望ましいタスクに適した画像を生成するために、これらのモデルを監査する必要性が高まっている。
しかし,プロンプトと生成コンテンツとの関係を人間に理解可能な方法で体系的に検査することは依然として困難である。
そこで本稿では,解釈可能な概念とメトリクスを用いて,視覚言語モデルの条件分布を特徴付けるフレームワークである \emph{Concept2Concept} を提案する。
このキャラクタリゼーションにより、モデルやプロンプトデータセットの監査にフレームワークを使用することができます。
本研究では,ユーザ定義分布や経験的実世界分布など,プロンプトの条件分布に関するいくつかのケーススタディについて述べる。
最後に、非技術的エンドユーザーによる使用を容易にするオープンソースのインタラクティブ可視化ツールであるConcept2Conceptを実装した。
警告: 本論文では, CSAM や NSFW などの有害物質について論じる。
関連論文リスト
- On the Fairness, Diversity and Reliability of Text-to-Image Generative Models [49.60774626839712]
マルチモーダル生成モデルは 彼らの公正さ、信頼性、そして誤用の可能性について 批判的な議論を呼んだ
組込み空間における摂動に対する応答を通じてモデルの信頼性を評価するための評価フレームワークを提案する。
本手法は, 信頼できない, バイアス注入されたモデルを検出し, バイアス前駆体の検索を行うための基礎となる。
論文 参考訳(メタデータ) (2024-11-21T09:46:55Z) - LLM-based Hierarchical Concept Decomposition for Interpretable Fine-Grained Image Classification [5.8754760054410955]
構造化概念解析によるモデル解釈可能性の向上を目的とした新しいフレームワークである textttHi-CoDecomposition を紹介する。
われわれのアプローチは、最先端のモデルの性能だけでなく、意思決定プロセスに対する明確な洞察を提供することで透明性を向上する。
論文 参考訳(メタデータ) (2024-05-29T00:36:56Z) - Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models [58.065255696601604]
拡散モデルの合成特性を使い、単一の画像生成において複数のプロンプトを利用することができる。
本論では, 画像生成の可能なすべてのアプローチを, 相手が適用可能な拡散モデルで検討することが重要であると論じる。
論文 参考訳(メタデータ) (2024-04-21T16:35:16Z) - Visual Concept-driven Image Generation with Text-to-Image Diffusion Model [65.96212844602866]
テキスト・ツー・イメージ(TTI)モデルは複雑なシーンの高解像度画像を生成するという印象的な結果を示した。
近年のアプローチでは、これらの手法をパーソナライズ技術で拡張し、ユーザ認証の概念の統合を可能にしている。
しかし、人間の被写体のような複数の相互作用する概念を持つ画像を生成する能力は、1つにまたがったり、複数にまたがったりする概念は、いまだに説明がつかないままである。
これらの課題に対処する概念駆動型TTIパーソナライズフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-18T07:28:37Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
テキスト・ツー・イメージ(T2I)拡散モデルはしばしば、透かしや安全でない画像のような望ましくない概念を不注意に生成する。
幾何学駆動制御に基づく新しい概念除去手法であるGeom-Erasingを提案する。
論文 参考訳(メタデータ) (2023-10-09T17:13:10Z) - Create Your World: Lifelong Text-to-Image Diffusion [75.14353789007902]
本稿では,過去の概念の「破滅的忘れ」を克服するために,ライフロングテキスト・画像拡散モデル(L2DM)を提案する。
我々のL2DMフレームワークは,知識の「破滅的忘れ」に関して,タスク対応メモリ拡張モジュールと弾性概念蒸留モジュールを考案している。
我々のモデルは、質的および定量的な指標の両方の観点から、連続的なテキストプロンプトの範囲にわたって、より忠実な画像を生成することができる。
論文 参考訳(メタデータ) (2023-09-08T16:45:56Z) - FLIRT: Feedback Loop In-context Red Teaming [79.63896510559357]
ブラックボックスモデルを評価し,その脆弱性を明らかにする自動レッドチーム化フレームワークを提案する。
私たちのフレームワークは、レッドチームモデルに対するフィードバックループでコンテキスト内学習を使用し、それらを安全でないコンテンツ生成にトリガーします。
論文 参考訳(メタデータ) (2023-08-08T14:03:08Z) - Discovering Concepts in Learned Representations using Statistical
Inference and Interactive Visualization [0.76146285961466]
概念発見は、深層学習の専門家とモデルエンドユーザーの間のギャップを埋めるために重要である。
現在のアプローチには、手作りの概念データセットと、それを潜在空間方向に変換することが含まれる。
本研究では,複数の仮説テストに基づく意味ある概念のユーザ発見と,インタラクティブな可視化に関する2つのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-09T22:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。