Is What You Ask For What You Get? Investigating Concept Associations in Text-to-Image Models
- URL: http://arxiv.org/abs/2410.04634v2
- Date: Fri, 14 Feb 2025 14:52:51 GMT
- Title: Is What You Ask For What You Get? Investigating Concept Associations in Text-to-Image Models
- Authors: Salma Abdel Magid, Weiwei Pan, Simon Warchol, Grace Guo, Junsik Kim, Mahia Rahman, Hanspeter Pfister,
- Abstract summary: Text-to-image (T2I) models are increasingly used in real-life applications.
There is a growing need to audit these models to ensure that they generate desirable, task-appropriate images.
We propose Concept2Concept, a framework where we characterize conditional distributions of vision language models.
- Score: 24.851041038347784
- License:
- Abstract: Text-to-image (T2I) models are increasingly used in impactful real-life applications. As such, there is a growing need to audit these models to ensure that they generate desirable, task-appropriate images. However, systematically inspecting the associations between prompts and generated content in a human-understandable way remains challenging. To address this, we propose Concept2Concept, a framework where we characterize conditional distributions of vision language models using interpretable concepts and metrics that can be defined in terms of these concepts. This characterization allows us to use our framework to audit models and prompt-datasets. To demonstrate, we investigate several case studies of conditional distributions of prompts, such as user-defined distributions or empirical, real-world distributions. Lastly, we implement Concept2Concept as an open-source interactive visualization tool to facilitate use by non-technical end-users. A demo is available at https://tinyurl.com/Concept2ConceptDemo.
Related papers
- V2C-CBM: Building Concept Bottlenecks with Vision-to-Concept Tokenizer [19.177297480709512]
Concept Bottleneck Models (CBMs) offer inherent interpretability by translating images into human-comprehensible concepts.
Recent approaches have leveraged the knowledge of large language models to construct concept bottlenecks.
In this study, we investigate to avoid these issues by constructing CBMs directly from multimodal models.
arXiv Detail & Related papers (2025-01-09T05:12:38Z) - On the Fairness, Diversity and Reliability of Text-to-Image Generative Models [49.60774626839712]
multimodal generative models have sparked critical discussions on their fairness, reliability, and potential for misuse.
We propose an evaluation framework designed to assess model reliability through their responses to perturbations in the embedding space.
Our method lays the groundwork for detecting unreliable, bias-injected models and retrieval of bias provenance.
arXiv Detail & Related papers (2024-11-21T09:46:55Z) - ConceptMix: A Compositional Image Generation Benchmark with Controllable Difficulty [52.15933752463479]
ConceptMix is a scalable, controllable, and customizable benchmark.
It automatically evaluates compositional generation ability of Text-to-Image (T2I) models.
It reveals that the performance of several models, especially open models, drops dramatically with increased k.
arXiv Detail & Related papers (2024-08-26T15:08:12Z) - A Concept-Based Explainability Framework for Large Multimodal Models [52.37626977572413]
We propose a dictionary learning based approach, applied to the representation of tokens.
We show that these concepts are well semantically grounded in both vision and text.
We show that the extracted multimodal concepts are useful to interpret representations of test samples.
arXiv Detail & Related papers (2024-06-12T10:48:53Z) - Visual Concept-driven Image Generation with Text-to-Image Diffusion Model [65.96212844602866]
Text-to-image (TTI) models have demonstrated impressive results in generating high-resolution images of complex scenes.
Recent approaches have extended these methods with personalization techniques that allow them to integrate user-illustrated concepts.
However, the ability to generate images with multiple interacting concepts, such as human subjects, as well as concepts that may be entangled in one, or across multiple, image illustrations remains illusive.
We propose a concept-driven TTI personalization framework that addresses these core challenges.
arXiv Detail & Related papers (2024-02-18T07:28:37Z) - Create Your World: Lifelong Text-to-Image Diffusion [75.14353789007902]
We propose Lifelong text-to-image Diffusion Model (L2DM) to overcome knowledge "catastrophic forgetting" for the past encountered concepts.
In respect of knowledge "catastrophic forgetting", our L2DM framework devises a task-aware memory enhancement module and a elastic-concept distillation module.
Our model can generate more faithful image across a range of continual text prompts in terms of both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-09-08T16:45:56Z) - ConceptBed: Evaluating Concept Learning Abilities of Text-to-Image
Diffusion Models [79.10890337599166]
We introduce ConceptBed, a large-scale dataset that consists of 284 unique visual concepts and 33K composite text prompts.
We evaluate visual concepts that are either objects, attributes, or styles, and also evaluate four dimensions of compositionality: counting, attributes, relations, and actions.
Our results point to a trade-off between learning the concepts and preserving the compositionality which existing approaches struggle to overcome.
arXiv Detail & Related papers (2023-06-07T18:00:38Z) - ConceptX: A Framework for Latent Concept Analysis [21.760620298330235]
We present ConceptX, a human-in-the-loop framework for interpreting and annotating latent representational space in Language Models (pLMs)
We use an unsupervised method to discover concepts learned in these models and enable a graphical interface for humans to generate explanations for the concepts.
arXiv Detail & Related papers (2022-11-12T11:31:09Z) - Discovering Concepts in Learned Representations using Statistical
Inference and Interactive Visualization [0.76146285961466]
Concept discovery is important for bridging the gap between non-deep learning experts and model end-users.
Current approaches include hand-crafting concept datasets and then converting them to latent space directions.
In this study, we offer another two approaches to guide user discovery of meaningful concepts, one based on multiple hypothesis testing, and another on interactive visualization.
arXiv Detail & Related papers (2022-02-09T22:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.