ActiView: Evaluating Active Perception Ability for Multimodal Large Language Models
- URL: http://arxiv.org/abs/2410.04659v1
- Date: Mon, 7 Oct 2024 00:16:26 GMT
- Title: ActiView: Evaluating Active Perception Ability for Multimodal Large Language Models
- Authors: Ziyue Wang, Chi Chen, Fuwen Luo, Yurui Dong, Yuanchi Zhang, Yuzhuang Xu, Xiaolong Wang, Peng Li, Yang Liu,
- Abstract summary: We evaluate active perception in Multimodal Large Language Models (MLLMs)
We focus on a specialized form of Visual Question Answering (VQA) that eases the evaluation yet challenging for existing MLLMs.
We observe that the ability to read and comprehend multiple images simultaneously plays a significant role in enabling active perception.
- Score: 18.992215985625492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active perception, a crucial human capability, involves setting a goal based on the current understanding of the environment and performing actions to achieve that goal. Despite significant efforts in evaluating Multimodal Large Language Models (MLLMs), active perception has been largely overlooked. To address this gap, we propose a novel benchmark named ActiView to evaluate active perception in MLLMs. Since comprehensively assessing active perception is challenging, we focus on a specialized form of Visual Question Answering (VQA) that eases the evaluation yet challenging for existing MLLMs. Given an image, we restrict the perceptual field of a model, requiring it to actively zoom or shift its perceptual field based on reasoning to answer the question successfully. We conduct extensive evaluation over 27 models, including proprietary and open-source models, and observe that the ability to read and comprehend multiple images simultaneously plays a significant role in enabling active perception. Results reveal a significant gap in the active perception capability of MLLMs, indicating that this area deserves more attention. We hope that our benchmark could help develop methods for MLLMs to understand multimodal inputs in more natural and holistic ways.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Explore the Hallucination on Low-level Perception for MLLMs [83.12180878559295]
We aim to define and evaluate the self-awareness of MLLMs in low-level visual perception and understanding tasks.
We present QL-Bench, a benchmark settings to simulate human responses to low-level vision.
We demonstrate that while some models exhibit robust low-level visual capabilities, their self-awareness remains relatively underdeveloped.
arXiv Detail & Related papers (2024-09-15T14:38:29Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.
Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.
We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
multimodal large language models (MLLMs) combine the inherent power of large language models (LLMs) with the renewed capabilities to reason about the multimodal context.
Many recent works in visualization have demonstrated MLLMs' capability to understand and interpret visualization results and explain the content of the visualization to users in natural language.
In this work, we aim to fill the gap by utilizing the concept of visualization literacy to evaluate MLLMs.
arXiv Detail & Related papers (2024-06-24T17:52:16Z) - Lumen: Unleashing Versatile Vision-Centric Capabilities of Large Multimodal Models [87.47400128150032]
We propose a novel LMM architecture named Lumen, a Large multimodal model with versatile vision-centric capability enhancement.
Lumen first promotes fine-grained vision-language concept alignment.
Then the task-specific decoding is carried out by flexibly routing the shared representation to lightweight task decoders.
arXiv Detail & Related papers (2024-03-12T04:13:45Z) - Exploring Perceptual Limitation of Multimodal Large Language Models [57.567868157293994]
We quantitatively study the perception of small visual objects in several state-of-the-art MLLMs.
We identify four independent factors that can contribute to this limitation.
Lower object quality and smaller object size can both independently reduce MLLMs' ability to answer visual questions.
arXiv Detail & Related papers (2024-02-12T03:04:42Z) - VCoder: Versatile Vision Encoders for Multimodal Large Language Models [46.95488342139727]
Multimodal Large Language Models (MLLM) have recently achieved impressive performance on vision-language tasks.
However, when prompted to identify or count (perceive) the entities in a given image, existing MLLM systems fail.
We propose using Versatile vision enCoders (VCoder) as perception eyes for Multimodal LLMs.
arXiv Detail & Related papers (2023-12-21T18:49:47Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
Multi-modal large language models (MLLMs) are trained based on large language models (LLM)
While they excel in multi-modal tasks, the pure NLP abilities of MLLMs are often underestimated and left untested.
We show that visual instruction tuning, a prevailing strategy for transitioning LLMs into MLLMs, unexpectedly and interestingly helps models attain both improved truthfulness and ethical alignment.
arXiv Detail & Related papers (2023-09-13T17:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.