Residual-based attention and connection to information bottleneck theory
in PINNs
- URL: http://arxiv.org/abs/2307.00379v1
- Date: Sat, 1 Jul 2023 16:29:55 GMT
- Title: Residual-based attention and connection to information bottleneck theory
in PINNs
- Authors: Sokratis J. Anagnostopoulos, Juan Diego Toscano, Nikolaos
Stergiopulos, George Em Karniadakis
- Abstract summary: Physics-informed neural networks (PINNs) have seen a surge of interest in recent years.
We propose an efficient, gradient-less weighting scheme for PINNs, that accelerates the convergence of dynamic or static systems.
- Score: 0.393259574660092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Driven by the need for more efficient and seamless integration of physical
models and data, physics-informed neural networks (PINNs) have seen a surge of
interest in recent years. However, ensuring the reliability of their
convergence and accuracy remains a challenge. In this work, we propose an
efficient, gradient-less weighting scheme for PINNs, that accelerates the
convergence of dynamic or static systems. This simple yet effective attention
mechanism is a function of the evolving cumulative residuals and aims to make
the optimizer aware of problematic regions at no extra computational cost or
adversarial learning. We illustrate that this general method consistently
achieves a relative $L^{2}$ error of the order of $10^{-5}$ using standard
optimizers on typical benchmark cases of the literature. Furthermore, by
investigating the evolution of weights during training, we identify two
distinct learning phases reminiscent of the fitting and diffusion phases
proposed by the information bottleneck (IB) theory. Subsequent gradient
analysis supports this hypothesis by aligning the transition from high to low
signal-to-noise ratio (SNR) with the transition from fitting to diffusion
regimes of the adopted weights. This novel correlation between PINNs and IB
theory could open future possibilities for understanding the underlying
mechanisms behind the training and stability of PINNs and, more broadly, of
neural operators.
Related papers
- Super Level Sets and Exponential Decay: A Synergistic Approach to Stable Neural Network Training [0.0]
We develop a dynamic learning rate algorithm that integrates exponential decay and advanced anti-overfitting strategies.
We prove that the superlevel sets of the loss function, as influenced by our adaptive learning rate, are always connected.
arXiv Detail & Related papers (2024-09-25T09:27:17Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
The neutron diffusion equation plays a pivotal role in the analysis of nuclear reactors.
Traditional PINN approaches often utilize fully connected network (FCN) architecture.
R2-PINN effectively overcomes the limitations inherent in current methods, providing more accurate and robust solutions for neutron diffusion equations.
arXiv Detail & Related papers (2024-06-23T13:49:31Z) - Active Learning with Fully Bayesian Neural Networks for Discontinuous and Nonstationary Data [0.0]
We introduce fully Bayesian Neural Networks (FBNNs) for active learning tasks in the'small data' regime.
FBNNs provide reliable predictive distributions, crucial for making informed decisions under uncertainty in the active learning setting.
Here, we assess the suitability and performance of FBNNs with the No-U-Turn Sampler for active learning tasks in the'small data' regime.
arXiv Detail & Related papers (2024-05-16T05:20:47Z) - Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
We analyze the rich directional structure of optimization trajectories represented by their pointwise parameters.
We show that training only scalar batchnorm parameters some while into training matches the performance of training the entire network.
arXiv Detail & Related papers (2024-03-12T07:32:47Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
We study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability.
We consider gradient descent (GD) and gradient descent (SGD) to train SNNs, for both of which we develop consistent excess bounds.
arXiv Detail & Related papers (2022-09-19T18:48:00Z) - Distribution-sensitive Information Retention for Accurate Binary Neural
Network [49.971345958676196]
We present a novel Distribution-sensitive Information Retention Network (DIR-Net) to retain the information of the forward activations and backward gradients.
Our DIR-Net consistently outperforms the SOTA binarization approaches under mainstream and compact architectures.
We conduct our DIR-Net on real-world resource-limited devices which achieves 11.1 times storage saving and 5.4 times speedup.
arXiv Detail & Related papers (2021-09-25T10:59:39Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
We investigate the use of PINNs surrogate modeling for turbulent Rayleigh-B'enard convection flows.
We show how it comes to play as a regularization close to the training boundaries which are zones of poor accuracy for standard PINNs.
The predictive accuracy of the surrogate over the entire half a billion DNS coordinates yields errors for all flow variables ranging between [0.3% -- 4%] in the relative L 2 norm.
arXiv Detail & Related papers (2021-03-05T09:48:57Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
We propose a rigorous estimation of the global curvature of weights across layers by approximating and controlling the norm of their Hessian matrix.
Our experiments on Word2Vec and the MNIST/CIFAR image classification tasks confirm that tracking the Hessian norm is a useful diagnostic tool.
arXiv Detail & Related papers (2020-04-20T18:12:56Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
We present the application of a class of deep learning, known as Physics Informed Neural Networks (PINN), to learning and discovery in solid mechanics.
We explain how to incorporate the momentum balance and elasticity relations into PINN, and explore in detail the application to linear elasticity.
arXiv Detail & Related papers (2020-02-14T08:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.