論文の概要: ProtoNAM: Prototypical Neural Additive Models for Interpretable Deep Tabular Learning
- arxiv url: http://arxiv.org/abs/2410.04723v1
- Date: Mon, 7 Oct 2024 03:25:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 02:17:53.690220
- Title: ProtoNAM: Prototypical Neural Additive Models for Interpretable Deep Tabular Learning
- Title(参考訳): ProtoNAM:Deep Tabular Learningのための原型ニューラル付加モデル
- Authors: Guangzhi Xiong, Sanchit Sinha, Aidong Zhang,
- Abstract要約: Prototypeal Neural Additive Model (ProtoNAM) は,新しい深層学習法である。
ProtoNAMは、GAMのフレームワークでニューラルネットワークにプロトタイプを導入する。
実験により, ProtoNAM は既存の NN ベース GAM よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 29.932706137805713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generalized additive models (GAMs) have long been a powerful white-box tool for the intelligible analysis of tabular data, revealing the influence of each feature on the model predictions. Despite the success of neural networks (NNs) in various domains, their application as NN-based GAMs in tabular data analysis remains suboptimal compared to tree-based ones, and the opacity of encoders in NN-GAMs also prevents users from understanding how networks learn the functions. In this work, we propose a new deep tabular learning method, termed Prototypical Neural Additive Model (ProtoNAM), which introduces prototypes into neural networks in the framework of GAMs. With the introduced prototype-based feature activation, ProtoNAM can flexibly model the irregular mapping from tabular features to the outputs while maintaining the explainability of the final prediction. We also propose a gradient-boosting inspired hierarchical shape function modeling method, facilitating the discovery of complex feature patterns and bringing transparency into the learning process of each network layer. Our empirical evaluations demonstrate that ProtoNAM outperforms all existing NN-based GAMs, while providing additional insights into the shape function learned for each feature. The source code of ProtoNAM is available at \url{https://github.com/Teddy-XiongGZ/ProtoNAM}.
- Abstract(参考訳): 一般化加法モデル (GAMs) は長年、表データの知的な分析のための強力なホワイトボックスツールであり、各特徴がモデル予測に与える影響を明らかにしてきた。
さまざまなドメインでのニューラルネットワーク(NN)の成功にもかかわらず、グラフデータ分析におけるNNベースのGAMとしての応用は、ツリーベースのものに比べて最適以下であり、NN-GAMにおけるエンコーダの不透明さは、ネットワークが機能をどのように学習するかを理解することを妨げている。
本稿では,GAMのフレームワークにおいて,ニューラルネットワークにプロトタイプを導入するプロトタイプ型ニューラルアダプティブモデル(Prototypeal Neural Additive Model, ProtoNAM)を新たに提案する。
プロトタイプベースの機能アクティベーションの導入により、ProtoNAMは最終的な予測の可否を維持しつつ、表特徴から出力への不規則なマッピングを柔軟にモデル化することができる。
また、複雑な特徴パターンの発見を容易にし、各ネットワーク層の学習プロセスに透明性をもたらす、勾配ブースティングにインスパイアされた階層型形状関数モデリング手法を提案する。
実験により,ProtoNAMは既存のNNベースGAMよりも優れており,各機能で学習した形状関数についてさらなる知見が得られた。
ProtoNAMのソースコードは \url{https://github.com/Teddy-XiongGZ/ProtoNAM} で公開されている。
関連論文リスト
- Gaussian Process Neural Additive Models [3.7969209746164325]
ランダムフーリエ特徴を用いたガウス過程の単一層ニューラルネットワーク構築を用いたニューラル付加モデル(NAM)の新たなサブクラスを提案する。
GP-NAMは凸目的関数と、特徴次元と線形に成長する訓練可能なパラメータの数が有利である。
GP-NAMは,パラメータ数を大幅に削減して,分類タスクと回帰タスクの両方において,同等あるいはより優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-02-19T20:29:34Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Interpretable Graph Neural Networks for Tabular Data [18.30325076881234]
IGNNetは学習アルゴリズムを制約し、解釈可能なモデルを生成する。
IGNNetは最先端の機械学習アルゴリズムに匹敵するパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-08-17T12:35:02Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Neighborhood Convolutional Network: A New Paradigm of Graph Neural
Networks for Node Classification [12.062421384484812]
グラフ畳み込みネットワーク(GCN)は、各畳み込み層における近傍の集約と特徴変換を分離する。
本稿では,周辺畳み込みネットワーク(NCN)と呼ばれるGCNの新しいパラダイムを提案する。
このようにして、モデルは、近隣情報を集約するための分離GCNの利点を継承すると同時に、より強力な特徴学習モジュールを開発することができる。
論文 参考訳(メタデータ) (2022-11-15T02:02:51Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Causality-aware counterfactual confounding adjustment for feature
representations learned by deep models [14.554818659491644]
因果モデリングは機械学習(ML)における多くの課題に対する潜在的な解決策として認識されている。
深層ニューラルネットワーク(DNN)モデルによって学習された特徴表現を分解するために、最近提案された対実的アプローチが依然として使われている方法について説明する。
論文 参考訳(メタデータ) (2020-04-20T17:37:36Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。