論文の概要: Interpretable Graph Neural Networks for Tabular Data
- arxiv url: http://arxiv.org/abs/2308.08945v3
- Date: Tue, 13 Aug 2024 12:44:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 23:24:38.618175
- Title: Interpretable Graph Neural Networks for Tabular Data
- Title(参考訳): タブラルデータのための解釈可能なグラフニューラルネットワーク
- Authors: Amr Alkhatib, Sofiane Ennadir, Henrik Boström, Michalis Vazirgiannis,
- Abstract要約: IGNNetは学習アルゴリズムを制約し、解釈可能なモデルを生成する。
IGNNetは最先端の機械学習アルゴリズムに匹敵するパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 18.30325076881234
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Data in tabular format is frequently occurring in real-world applications. Graph Neural Networks (GNNs) have recently been extended to effectively handle such data, allowing feature interactions to be captured through representation learning. However, these approaches essentially produce black-box models, in the form of deep neural networks, precluding users from following the logic behind the model predictions. We propose an approach, called IGNNet (Interpretable Graph Neural Network for tabular data), which constrains the learning algorithm to produce an interpretable model, where the model shows how the predictions are exactly computed from the original input features. A large-scale empirical investigation is presented, showing that IGNNet is performing on par with state-of-the-art machine-learning algorithms that target tabular data, including XGBoost, Random Forests, and TabNet. At the same time, the results show that the explanations obtained from IGNNet are aligned with the true Shapley values of the features without incurring any additional computational overhead.
- Abstract(参考訳): 表形式のデータは、現実世界のアプリケーションで頻繁に発生する。
グラフニューラルネットワーク(GNN)は最近、そのようなデータを効果的に扱うように拡張され、表現学習を通じて特徴的インタラクションをキャプチャできるようになった。
しかし、これらのアプローチは本質的には深層ニューラルネットワークの形でブラックボックスモデルを生成し、ユーザーはモデル予測の背後にあるロジックに従うことを排除している。
我々はIGNNet (Interpretable Graph Neural Network for tabular data) と呼ばれる手法を提案し、この手法は学習アルゴリズムを制約して解釈可能なモデルを生成し、モデルが元の入力特徴から正確に予測がどのように計算されるかを示す。
IGNNetは、XGBoost、Random Forests、TabNetなど、表層データをターゲットにした最先端の機械学習アルゴリズムと同等のパフォーマンスを示している。
同時に、IGNNetから得られた説明は、追加の計算オーバーヘッドを発生させることなく、機能の真のShapley値に一致していることを示す。
関連論文リスト
- Scalable and Consistent Graph Neural Networks for Distributed Mesh-based Data-driven Modeling [0.0]
この研究は、メッシュベースのモデリングアプリケーションのための分散グラフニューラルネットワーク(GNN)方法論を開発する。
一貫性とは、1つのランク(1つの大きなグラフ)で訓練され評価されたGNNが、複数のランク(分割グラフ)での評価と算術的に等価であるという事実を指す。
NekRSメッシュのパーティショニングが分散GNNトレーニングと推論ルーチンにどのようにリンクできるかを示し、スケーラブルなメッシュベースのデータ駆動モデリングワークフローを実現する。
論文 参考訳(メタデータ) (2024-10-02T15:22:27Z) - Interpretable Graph Neural Networks for Heterogeneous Tabular Data [2.8084422332394423]
IGNHは分類的特徴と数値的特徴の両方を扱い、学習プロセスを制約して正確な特徴属性を生成する。
IGNHが提供した特徴属性は,ホック後に計算されたShapley値と一致していることを示す。
論文 参考訳(メタデータ) (2024-08-14T16:49:25Z) - GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data [14.124731264553889]
我々はGCondNetを提案し、データに存在する暗黙構造を活用してニューラルネットワークを強化する。
GCondNetはデータの高次元性を利用して、基礎となる予測ネットワークの性能を向上させる。
GCondNetが実世界の12のデータセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2022-11-11T16:13:34Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - Invertible Neural Networks for Graph Prediction [22.140275054568985]
本研究では,ディープ・インバーチブル・ニューラルネットワークを用いた条件生成について述べる。
私たちの目標は,前処理と後処理の予測と生成を同時に行うことにあるので,エンドツーエンドのトレーニングアプローチを採用しています。
論文 参考訳(メタデータ) (2022-06-02T17:28:33Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - Variational models for signal processing with Graph Neural Networks [3.5939555573102853]
本稿では,ニューラルネットワークを用いた点雲の信号処理について述べる。
本研究では,このようなグラフニューラルネットワークの変分モデルを用いて,教師なし学習のためのグラフ上の信号を処理する方法を検討する。
論文 参考訳(メタデータ) (2021-03-30T13:31:11Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。